Civil Engineering Education Summit

Mapping the Future of Civil Engineering Education

May 28-30, 2019 | Dallas, Texas
Civil Engineering Education Summit

Mapping the Future of Civil Engineering Education

May 28-30, 2019 | Dallas, Texas

www.asce.org/education-Summit

Southern Methodist University in Dallas, Texas
www.smu.edu

Summit Program Committee Co-Chairs:
Kevin Hall, University of Arkansas
Daniel Linzell, University of Nebraska

Summit Organization Committee Chair:
Barbara Minsker, Southern Methodist University

ASCE Committee on Education Chair:
Camilla M. Saviz, University of the Pacific

ASCE Department Heads Coordinating Council Chair:
Jerome F. Hajjar, Northeastern University
Summary

Executive Summary
Introduction
Speakers

Connecting the Future

Panel Discussions
Curriculum Development

Conceiving the Future

Mini TED Talks
PechaKuchas

Constructing the Future

Moving from Vision to Action 1 and 2
Discussion

Conclusions

Acknowledgments
Sponsors

Appendix

Appendix A
Appendix B
Executive Summary

It has long been recognized that engineering education should mirror the profession itself – as a dynamic, ever-evolving field. Indeed, in its 1955 Report on Evaluation of Engineering Education, a panel sponsored by the American Society for Engineering Education (ASEE) stated:

“Engineering is far from static, for it is essentially a creative profession.”

This sentiment is echoed in the Summary Report of the 1995 Civil Engineering Education Conference (ASCE):

“...civil engineering education should be continually evolving to higher levels of quality and at all times incorporating new technologies and practices into the civil engineering education process.”

In keeping with these statements, the engineering profession has witnessed an acceleration of the breadth, depth, and magnitude of change – not only to the complexity of challenges engineers must address but also to the tools available to address those challenges and to the people who will address them. This accelerating pace of change necessitates revisiting our basic understanding of civil engineering education currently, and through the middle of the 21st century.

Over 200 civil engineering educators, practitioners, and guests convened at the Civil Engineering Education Summit in Dallas, Texas, in May 2019 to consider the future—our future populations, engineering challenges presented by those populations, and opportunities and challenges related to preparing civil engineers to address and meet those challenges. Participants at the 2019 Civil Engineering Education Summit considered visions of the future, examined current efforts by the profession and across universities to advance education in the context of those visions, and identified opportunities to transform the civil engineering educational experience to prepare students for the future. The theme for the Summit was “Empowered to Innovate,” emphasizing the goal to provide civil engineering educators with ideas, examples, and encouragement to undertake the curricular innovation and other changes needed to meet the needs of our rapidly evolving profession, and highlighting the importance of promoting a culture of innovation within the civil engineering field.

During the first part of the Summit, participants heard from a series of experts, including ASCE President-Elect K. N. Gunalan, about the current state of the civil engineering profession (“Connecting the Future”). The second part, “Conceiving the Future,” featured vision presentations from innovators who are pushing the frontiers of the profession, including Chris Luebkeman of Arup Foresight and Jerry Buckwalter of Northrop Grumman. These speakers set the stage for the participants to generate “opportunity statements” and “Big Ideas” for the profession to pursue change. Finally, participants discussed these draft Summit outputs and rank ordered the opportunity statements during the third session (“Constructing the Future”).

Summit Findings

Opportunity Statements
Defining civil engineering as a people-focused profession, participants linked people/stakeholder groups with actions addressing future needs. This exercise fostered the creation of “Opportunity Statements,” in the form of “(People/Group) need to (need) so that (result).”

One example is: “Students need to learn systems thinking so that they are prepared for current and future societal challenges.”

Summit participants generated a total of 186 Opportunity Statements. These statements were then grouped...
by the identified people, the need(s), and the opportunity/result. The groupings allowed for the identification of common themes. The Summit Program Committee used these themes to identify a list of the “top 20” statements to move forward for possible action. As a final step in this development process, Summit participants “ranked” the “top 20” Opportunity Statements by priority and brainstormed “Big Ideas” for implementing each statement. Although the participants prioritized opportunities for action, the full collection of Opportunity Statements developed at the Summit represents a rich database of ideas worthy of consideration by the profession and individual educational programs.

The Future of Civil Engineering Education

The Summit proposed a vision of civil engineering, defined at its most basic level:

Civil Engineering is a global, holistic profession that serves the needs of all people.

In the future-oriented focus of the Summit, it was agreed that the needs of people, and the contexts related to meeting those needs, are becoming increasingly complex in our ever-evolving world. Thus, our educational systems, which prepare future engineers, must also evolve to address this complexity.

Three primary goals emerged from synthesizing the opportunity statements. The field of civil engineering needs to:

1. Be a *Profession* that serves people;
2. Have a *Culture* that includes people; and
3. Provide an *Education* that prepares people.

Four major objectives emerged from the discussions and workshop activities as initial pathways toward achieving these goals:

OBJECTIVE 1:

Reexamine, and potentially redefine, the domain of Civil Engineering.

A clear consensus among Summit participants is that the world is becoming increasingly complex – thus, the challenges faced by engineers are becoming increasingly complex. One aspect of this complexity relates to the interconnected nature of infrastructure, environmental, political, and social systems. Such interconnectedness is a major driver of the dissolution of traditional “boundaries” that define a particular engineering discipline. Summit participants dared to ask the question, “In the context of the mid-21st century, what is a civil engineer?” Two elements related to this most fundamental question reflect the impact of technological advancement and the evolving role of the civil engineer in society.

ASCE’s *The Vision for Civil Engineering in 2025* (published in 2006) anticipates the evolutionary, holistic nature of the role of civil engineers:

“In 2025, civil engineers will serve as master builders, environmental stewards, innovators and integrators, managers of risk and uncertainty, and leaders in shaping public policy.”

An undergraduate civil engineering program is not sufficient to fully prepare a graduate to be a master builder, steward, innovator, manager, and leader. This is recognized in the *Civil Engineering Body of Knowledge, 3rd Edition* (CEBOK3), which calls for a combination of formal education, structured mentoring, and self-directed learning to position the civil engineer for career success. However, an undergraduate civil engineering curriculum provides the foundation on which to build the knowledge, skills, and attitudes of the future civil engineer.

It is clear that the already rapid pace of technological change and advancement will continue unabated – and very possibly accelerate. In his plenary remarks, Arup Foresight engineer/futurist Chris Luebkeman observed the megatrend “if it can be automated, it will be automated ...” New tools and new computational and analysis techniques are being introduced into the profession at a rate beyond that to which most engineering education programs can react and adapt. Although this issue is not necessarily new, Summit participants struggled with the disparity between the current and anticipated pace of innovation in the profession versus that in education.

Therefore, a major topic that emerged from the Summit is the need to expand the domain of civil engineering to address technological advancement. Two other topics related to this theme also received significant attention by Summit participants, resulting in the following major recommendations:

1. Learning new competencies related to emerging technologies that are rapidly changing civil engineering (e.g., data science, robotics, sensors, drones, and virtual reality), as well as the knowledge and skills needed to use those technologies.
2. Integrating more systems thinking into civil engineering education to support global stewardship, emphasize the importance of increased stakeholder engagement, and evaluate the potential for unintended consequences. Systems thinking skills can be enhanced through experiences such as real-world problem solving, project-based education, and high-impact experiences like internships, service learning, study abroad, student organizations, and competitions.

3. Promoting a culture of innovation within the profession through more directed teaching of creative processes, entrepreneurship, and evaluation of risk as an integral part of curricula and mentored practice.

These Summit discussions give rise to a major implication for 21st-century civil engineering education: curricular flexibility. Indeed, “flexibility” emerged as another primary theme among Opportunity Statements related to civil engineering curricula, with five (5) of the “top 20” Opportunity Statements addressing the issue. Summit participants called for civil engineering departments to define for themselves a program of study to meet the needs of their stakeholders within very broad overarching guidelines. Such flexibility enables a more rapid response to technological changes in the profession; an integration of instruction addressing future roles of civil engineers; and an elevation of professional skills as a requirement of civil engineering education. These benefits must be balanced by a recognition of the benefit of having some degree of uniformity in education across the profession.

OBJECTIVE 2: Elevate professional skills to a truly equal footing with technical skills.

Certainly, the need for strong professional skills has long been recognized by both civil engineering educators and practitioners.

The ASEE “Grinter Report” (1955) included two outcomes related to this concept:

1. “An insistence upon the development of a high level of performance in the oral, written, and graphical communication of ideas”

The Summary Report of the 1995 Civil Engineering Education Conference contained numerous recommendations related to professional skills; for example:

1. “Emphasize the need for sensitivity to culturally diverse groups”
2. “Encourage students to convey the importance of engineering works to non-engineering students on campus”
3. “Recognize communication skills, leadership skills, management, and teamwork by creating awards for students”
4. “Provide learning from non-verbal communication and listening skills”
5. “Provide industry speakers to emphasize the importance of communication skills, leadership, management, and teamwork”

The CEBOK3, published in 2019, also recognizes this need. It includes six outcomes related to professional skills: communication, teamwork and leadership, lifelong learning, professional attitudes, professional responsibilities, and ethical responsibilities.

Multiple generations of educators and practitioners (1955, 1995, 2019) have thus recognized the necessity for professional skills in the successful civil engineer. It is curious, however, that these multiple generations were all moved to emphasize the need for increasing the level of professional skills in graduates – suggesting that the profession continues to lag in the development of these skills in our students.

Summit participants placed significant emphasis on this topic; of the 20 prioritized Opportunity Statements, seven (7) address professional skills and abilities. Moving forward, topics related to professional skills should be elevated in importance within curricula – to be thought of not as “desirable,” but “required,” on an equal basis with the various technical/design skills currently emphasized in undergraduate programs.
OBJECTIVE 3:

Develop a diverse, inclusive, equitable, and engaging culture within the civil engineering profession.

Summit participants engaged in significant discussion regarding “professional culture” and related topics in the context of civil engineering. Although it may be tempting to place these topics and discussions within the realm of professional skills and attitudes, this subject rose to represent a major theme of the event. At least four (4) of the “top 20” prioritized Opportunity Statements address the concept of civil engineering culture. Participants explored the distinct yet interconnected nature of diversity, inclusion, and equity; the need to engage students at all levels; and the concept of permeating the student educational experience with these concepts. Summit participants suggested that the following elements need to be addressed by the entire profession, within both the education and practitioner communities:

- Dedicated and intentional instruction and training related to diversity, inclusion, and equity;
- Increasing representation within the profession – including student bodies, faculty ranks, and practitioners (at all levels);
- Modeling inclusivity and equity in the classroom and in the workplace; and
- Engaging students at all levels (K-12, college/university), to demonstrate the value of a civil engineering degree.

OBJECTIVE 4:

Implement a regular schedule of national/international civil engineering education events, and dedicate resources to address findings.

Planners of the 2019 Civil Engineering Education Summit consulted a significant body of literature to explore topics and themes arising from previous assessments of engineering education. As noted earlier in this summary, there have been remarkable similarities in topical areas and themes arising from these efforts. Issues identified in the 1955 ASEE report continued to be identified 40 years later at the 1995 ASCE Conference.

Summit participants agreed that the 2019 Civil Engineering Education Summit was highly worthwhile, and expressed both hope and confidence that real and significant change could result from the work accomplished during the Summit. Change will require:

- Ongoing commitment of the civil engineering community – educators and practitioners – to collaborate on developing, implementing, and monitoring actions arising from the Summit recommendations.
- A regular schedule of events to advance civil engineering education.
- Support of academia and the profession, including ASCE, to dedicate resources to the priorities identified at the Summit.

Summit participants recognized that change in civil engineering education will require dedication to a shared vision and a collective willingness to work for it. As presented in summary remarks at the conclusion of the Summit, advancement of civil engineering education will require three elements to TAP the innovation opportunities identified by participants:

- Tenacity to ensure that needed change occurs;
- Audacity to propose bold actions and tactics to fully realize necessary change; and
- Practicality to understand that necessary change can and must occur over different time scales.

Collectively, the vision proposed by the Summit participants is bold and far-reaching. The Opportunity Statements identify both near-term and long-term action areas that will position the civil engineering profession for continued advancement and leadership through the mid-21st century. As such, the findings of the Summit provide vital input to future initiatives such as revisions to the Civil Engineering Body of Knowledge, 3rd Edition (CEBOK3), future formulations of the ABET Civil Engineering Program Criteria (CEPC), ASCE’s Future World Vision, and civil engineering curricula.
Introduction

In May 2019, participants at the American Society of Civil Engineers (ASCE) Engineering Education Summit considered the future – our future populations, engineering challenges presented by those populations, and opportunities and challenges related to preparing civil engineers to address and meet those challenges. It has long been recognized that engineering education should mirror the profession itself – as a dynamic, ever-evolving field. Indeed, in its 1955 Report on Evaluation of Engineering Education, a panel sponsored by the American Society for Engineering Education (ASEE) stated:

“Engineering is far from static, for it is essentially a creative profession.”

This sentiment is echoed in the Summary Report of the 1995 Civil Engineering Education Conference (ASCE):

“...civil engineering education should be continually evolving to higher levels of quality and at all times incorporating new technologies and practices into the civil engineering education process.”

In keeping with these statements, the engineering profession has witnessed an acceleration of the breadth, depth, and magnitude of change – not only to the complexity of challenges engineers must address but also to the tools available to address those challenges and to the people who will address them. This accelerating pace of change necessitates revisiting our basic understanding of civil engineering education currently, and through the middle of the 21st century.

To this end, over 200 civil engineering educators, practitioners, and guests convened at Southern Methodist University (SMU) in Dallas, Texas, in May 2019 to consider visions of the future, examine current efforts by the profession and across universities to advance education in the context of those visions, and identify opportunities to transform the civil engineering educational experience to prepare students for the future. The theme for the Summit was “Empowered to Innovate,” emphasizing the goal to provide civil engineering educators with ideas, examples, and encouragement to undertake the curricular innovation and other changes needed to meet the needs of our rapidly evolving profession, and highlighting the importance of promoting a culture of innovation within the civil engineering field. This event was the first ASCE gathering focused on the future of CE education since the 1995 Civil Engineering Education Conference (CEEC ’95) [ASCE (1995)].

During the first session of the Summit, participants heard from a series of experts about the current state of the civil engineering profession (“Connecting the Future”). The second session, “Conceiving the Future,” featured vision presentations from innovators who are pushing the frontiers of the profession. These speakers set the stage for the highly participatory “Moving Vision to Action” engagement, led by a team from SMU’s Lyle School of Engineering Design and Innovation Program, in which participants developed 156 “opportunity statements” and “Big Ideas” for the profession to pursue change. The Summit Program Committee then synthesized these ideas into “top 20” opportunity statements and four objectives for the future of CE education. Finally, participants discussed these draft Summit outputs and rank ordered the opportunity statements during the third session (“Constructing the Future”).

More details on the process and outcomes of these three sessions are given below, followed by conclusions, acknowledgments, and a sponsor list. Finally, Appendix A lists all 156 opportunity statements generated during the Summit and Appendix B provides a bibliography of references that the program committee and participants consulted as background for their work.
Speakers

Caroline Benett | University of Kansas
Dr. Caroline Bennett is a Professor in Civil, Environmental, and Architectural Engineering at the University of Kansas (KU). She is the Lead for the School of Engineering’s Engaged Learning Initiative, and previously served as a Faculty Fellow with the KU Center for Teaching Excellence. Caroline works in multiple leadership roles at KU focused on bringing about change in higher educational practices, including co-leading the NSF-funded TRESTLE network. Caroline joined KU faculty in 2006 after earning her doctorate from the University of Cincinnati. She is a licensed Professional Engineer in Kansas.

Jerry Buckwalter | ASCE
Gerald (Jerry) Buckwalter is the chief operating and strategy officer responsible for helping to shape the strategic direction and operational effectiveness of ASCE. Additionally, he oversees the Future World Vision initiative and several areas of internal operations. With over 35 years of experience as a process-minded leader, he came to ASCE from Northrop Grumman, where he most recently served as Director of Corporate Strategy. Jerry earned a bachelor's degree in physics from Monmouth University and completed advanced coursework in technology systems at The George Washington University and in international business management at the Massachusetts Institute of Technology.

Sarah Christian | Carnegie Mellon University
Sarah Christian is an Assistant Teaching Professor in the Department of Civil and Environmental Engineering at Carnegie Mellon University. She earned her B.S. in Civil Engineering at Carnegie Mellon University, MCE at Johns Hopkins University, and Ph.D. in Civil and Environmental Engineering with a focus on Structural Engineering and Materials at Stanford University in 2009. Sarah has practiced as a structural engineer and building envelope engineer in Washington, D.C., and Pittsburgh. She teaches courses on Engineering Design, Materials, Structural Engineering, and Soil Mechanics. Sarah's interests include interactive and student-centered learning, design education, and curricula of the future.

David A. Dzombak | Carnegie Mellon University
David Dzombak is the Hamerschlag University Professor and Head of the Department of Civil and Environmental Engineering at Carnegie Mellon University. The emphasis of his research and teaching is on water quality engineering, water resource sustainability, and energy-environment issues. He has served on ASCE’s Department Heads Coordinating Council since 2018. He received his Ph.D. in Civil Engineering from the Massachusetts Institute of Technology and holds a B.S. and M.S. in Civil Engineering from Carnegie Mellon. He is a registered Professional Engineer in Pennsylvania, a Board-Certified Environmental Engineer, a Diplomate Water Resources Engineer, and a member of the National Academy of Engineering.

Clifton Farnsworth | Brigham Young University
Clifton B. Farnsworth is an Associate Professor in the Construction and Facilities Management Program at Brigham Young University. He graduated with B.S. and M.S. degrees in Civil Engineering from Brigham Young University and a Ph.D. in Civil Engineering from the University of Utah. He is a licensed Professional Engineer in Utah. Prior to his academic appointment, he worked as a civil engineer for the Utah Department of Transportation in geotechnical and construction-related roles. His research interests include heavy civil and infrastructure construction, disaster reconstruction, and construction and engineering education.
Tiago Forin | Rowan University

Tiago Forin is an instructor at Rowan University, responsible for teaching Engineering Clinic courses. As the Project Coordinator for RevED (Revolutionizing Engineering Diversity), Tiago is the point of contact for Rowan University within the cohort of participating institutions. RevED focuses on increasing representation in engineering across visible and non-visible elements of diversity. This five-year longitudinal project uses qualitative research methods to collect data regarding diversity in Rowan’s Civil and Environmental Engineering Department. That data is analyzed and reported on in order to engage university administrators and faculty to influence change in admissions criteria and curricular design.

Ken Fridley | University of Alabama

Dr. Ken Fridley joined The University of Alabama in 2003 as professor and head of the department of civil, construction, and environmental engineering and became the senior associate dean in the College of Engineering in 2015. He has also served as the founding director of the University’s Center for Sustainable Infrastructure. Fridley earned his bachelor’s degree in civil engineering from Washington State University, master’s in architectural engineering from the University of Texas, and doctorate in civil engineering from Auburn University. Prior to joining The University of Alabama, Fridley served on the faculty at several other national flagship universities. He has extensive experience in the area of structural wood engineering, including load-duration behavior (creep-rupture) of wood and wood-based materials, structural connections, and response and protection of wood-frame buildings to natural hazards, including wind and seismic actions.

K. N. Gunalan | ASCE 2019 President-Elect

K. N. Gunalan (Guna) is the senior vice president, transportation, alternative delivery, Americas at AECOM, based in Salt Lake City, UT. Guna has managed large complex infrastructure projects, providing technical advice on civil, structural, geotechnical, pavement, and materials issues on a variety of projects around the world. His collaborative approach has contributed to many successful programs and projects ranging from a few thousand dollars to more than 3 billion dollars. Guna has been active in ASCE for many years, including leadership roles as Region 8 director (2009-2012), Region 8 governor (2005-2007), Utah Section president (2002-2003), and Texas Section High Plains Branch president (1992). Most recently, he served as a governor for the Geo-Institute and was a member of the steering committee for the 2017 ASCE India Conference.

Kevin Hall | University of Arkansas

Dr. Kevin D. Hall is the Hicks Endowed Professor of Infrastructure Engineering at the University of Arkansas, where he has served on the faculty for 27 years, including 11 years as the Head of the Department of Civil Engineering. Hall is very active in the Civil Engineering education community, having served on the ASCE Committee on Education, as the Chair of the Civil Engineering Division of the American Society for Engineering Education (ASEE), and as the Chair of the ASCE Department Heads Coordinating Council (DHCC). His research and teaching interests include pavement materials, design, construction, and rehabilitation, as well as professional practice issues. He is a member of ASCE and is a licensed Professional Engineer in Arkansas.

Marc Hoit | North Carolina State University

In 2008 Marc Hoit became NC State’s first vice-chancellor for information technology and Chief Information Officer. Dr. Hoit is a professor of Civil Engineering. Prior to NC State he was at the University of Florida. Hoit was the co-principal investigator for the U.S. Department of Homeland Security grant to develop an early warning system for health-security. He was also the Principal Investigator for DIGGS, an international-XML standard for transferring transportation information. He is a Fellow of the American Society of Civil Engineers and the Structural Engineering Institute. He earned his B.S. from Purdue and his M.S. and Ph.D. from the University of California at Berkeley.
Keith B. Jackson | HNTB
Keith B. Jackson, P.E., has more than 38 years of civil engineering and project management experience as a top consultant to state departments of transportation in Texas, Oklahoma, and Arkansas. Keith is a Senior Vice President with HNTB and is responsible for growth of the firm’s business across Texas. Prior to joining HNTB, Keith served as a vice president of transportation and infrastructure for another consulting firm, building and managing a staff of 30 people that led to an increase of $32 million in sales over a five-year period. Jackson has a wide range of engineering experience with municipal and educational projects including due diligence, major utilities construction, site permitting and entitlements.

Daniel Linzell | University of Nebraska-Lincoln
Daniel Linzell was appointed Associate Dean for Graduate and International Programs at the University Nebraska Lincoln (UNL) College of Engineering (COE) in October 2018. Previously, he served as Chair of the Department of Civil Engineering (CIVE) from August 2013 to September 2018 and concurrently held the Donald R. Voelte, Jr. and Nancy A. Keegan Professorship in Engineering in November of 2013. Prior to joining UNL, he was an Assistant, Associate and the inaugural John A. and Harriette K. Shaw Professor of Civil Engineering at the Pennsylvania State University (PSU). Daniel received his M.S. and Ph.D. from the Georgia Institute of Technology. He received his Bachelor of Science in Civil Engineering from the Ohio State University in 1990. Daniel is a Fellow of the American Society of Civil Engineers (ASCE).

Chris Luebkeman | ARUP Foresight
Arup Fellow and Director of Global Foresight + Research + Innovation, Dr. Chris Luebkeman works with some of the world’s leading companies to develop a better understanding of the opportunities created by change in our built environment. Since joining Arup in 1999, Chris has initiated research projects on the designer’s desktop of the future. He is an active participant and speaker in Summits ranging from those of the Design Futures Council to the World Economic Forum. Chris’s engaging, interactive talks foster the thoughts on which forces drive change and how we can co-build our future city.

Jerome P. Lynch | University of Michigan
Prof. Jerome Lynch, Ph.D., is the Donald Malloure Department Chair of Civil and Environmental Engineering at the University of Michigan. He is also Professor of Civil and Environmental Engineering and Professor of Electrical Engineering and Computer Science. Lynch received his M.S. degrees in Civil and Environmental Engineering and in Electrical Engineering and his Ph.D. in Civil and Environmental Engineering from Stanford University. He received his B.E. in Civil and Environmental Engineering from the Cooper Union in New York City. Lynch has been awarded the 2005 Office of Naval Research Young Investigator Award, the 2012 ASCE EMI Leonardo da Vinci Award, and the 2014 ASCE Walter L. Huber Civil Engineering Research Prize.

Barbara E. Minsker | Southern Methodist University
Barbara E. Minsker, Ph.D., P.E., is the Bobby B. Lyle Endowed Professor of Leadership and Global Entrepreneurship at Southern Methodist University. She serves as Chair of the Department of Civil and Environmental Engineering and Senior Fellow in the Hunt Institute for Engineering and Humanity. Dr. Minsker’s research area is environmental informatics and systems analysis. Prior to joining SMU in 2016, Minser was Professor in the Department of Civil and Environmental Engineering at the University of Illinois Urbana-Champaign. She earned a B.S. in Operations Research and Industrial Engineering with Distinction and a Ph.D. in Civil and Environmental Engineering from Cornell University.
Audra Morse | Michigan Technological University
Dr. Audra Morse, P.E., BCEE, FASCE, ENV SP, is Professor and Chair of the Civil and Environmental Engineering Department at Michigan Technological University. Her research focuses on wastewater reuse and engineering education. Prior to Michigan Tech, Dr. Morse was a professor in the Department of Civil, Environmental, and Construction Engineering at Texas Tech University, where she served as Associate Dean. She received the two highest teaching honors and the President’s Excellence in Gender Equity Award. She is an ABET EAC Commissioner, Chair of the ASCE Committee on Accreditation Committee, and a Civil Engineering Body of Knowledge, 3rd Edition, committee member.

Rebekah Oulton | California Polytechnic University, San Luis Obispo
Rebekah Oulton, Ph.D., PE, LEED AP, ENV SP is an Associate Professor at California Polytechnic University, San Luis Obispo, in the Civil and Environmental Engineering Department. Prior to Cal Poly, she worked as a professional engineer and project manager for a civil engineering consulting firm. Her technical research addresses advanced treatment methods to target emerging contaminants during water and wastewater treatment, and optimization of green infrastructure for stormwater management and pollutant control. She teaches water resources engineering, water treatment and reuse, and sustainable practices in civil and environmental design.

Yvette E. Pearson | Rice University
Dr. Yvette E. Pearson is Associate Dean for Accreditation, Assessment, and Strategic Initiatives in the George R. Brown School of Engineering at Rice University and Founder of The Pearson Evaluation and Education Research Group. An ASCE Fellow, she has been recognized for more than two decades of contributions to engineering education and research. Among her numerous awards and honors are ABET’s Claire L. Felbinger Award for Diversity and Inclusion and ASCE’s Professional Practice Ethics and Leadership Award for her achievements toward diversity, equity, and inclusion in engineering. Dr. Pearson is the Inaugural Chair of Members of Society Advancing an Inclusive Culture (MOSAIC), ASCE’s Board-level advisory council on diversity, equity, and inclusion. She is a registered Professional Engineer, has served seven years as a Program Evaluator for the ABET Engineering Accreditation Commission (EAC), and will join the EAC as a Commissioner in July 2020.

Mike Penn | University of Wisconsin-Platteville
Mike Penn is a professor of environmental and civil engineering at the University of Wisconsin-Platteville. He earned degrees from the University of Michigan (B.S., M.S.) and Michigan Technological University (Ph.D.). He teaches undergraduate courses including: Introduction to Engineering Projects, Introduction to Infrastructure, Environmental Engineering, Water Supply and Treatment, Wastewater Engineering, Air and Waste Management, Land Development, and Wetlands. His research interests include pedagogy, surface water quality, and waste management. He is involved with providing water management assistance to rural regions in developing nations through the Global Water Stewardship. He is the lead author of Introduction to Infrastructure: An Introduction to Civil and Environmental Engineering, published by Wiley. He is a licensed engineer in Wisconsin.

Angel “Ari” Perez | Quinnipiac University
Ari Perez-Mejia earned his undergraduate degree in civil engineering at the Universidad Tecnologica Centroamericana (UNITEC) in Honduras and did his graduate work at the University of South Carolina. He received his Ph.D. in 2014 and joined the engineering faculty at Quinnipiac University that same year. His interests are in the conservation of archaeological sites, engineering education with a focus on civil and geotechnical engineering, and the musical stylings of Taylor Swift.
Mary Roth | Lafayette College

Mary Roth is a Professor of Civil Engineering at Lafayette College. She received her degrees from Lafayette College (B.S.), Cornell University (M.S.), and the University of Maine (Ph.D.). Her teaching interests include foundation engineering, introduction to engineering, and courses designed to engage students from the arts and humanities with engineering topics. Her research interests include risk assessment for geotechnical structures, site investigation in karst, and the use of bacteria to modify the properties of soils. She has over 70 publications and has served as principal or co-principal on nine NSF grants. She is a licensed engineer in Maine and Pennsylvania.

John Schemmel | Texas State University

Dr. John Schemmel is the Bruce and Gloria Ingram Endowed Chair in Engineering and Civil Engineering program Coordinator at Texas State University. Previously, John served as Director of the Concrete Industry Management Program at Texas State, founder of eTEC LLC, and Professor at Valparaiso University, South Dakota State University, and the University of Arkansas. Dr. Schemmel holds degrees from the University of Wisconsin (BSCE), Lehigh University (M.S.), and North Carolina State University (Ph.D.). He is a Fellow of ACI, recipient of ACI’s Certification Award, and is Secretary for and an Honorary Member of ASTM Committee C09.

Lucio Soibelman | University of Southern California

Professor Soibelman obtained his bachelor and master’s degrees from UFRGS, Brazil. He worked as a construction manager for 10 years before obtaining his Ph.D. in 1998 at MIT. He was a faculty in UIUC and CMU before he joined USC as the Chair of the CEE department in 2012. During the last 25 years he focused his research on advanced data acquisition, management, visualization, and mining for construction and operations of advanced infrastructure systems. He has published over 150 books, book chapters, journal papers, Summit articles, and reports and performed research with funding from NSF, NASA, DOE, US Army, NIST, IBM, Bosch, IDOT, and RedZone Robotics among many others funding agencies.

Brett Story | Southern Methodist University

Brett Story joined the SMU faculty in 2013 as a professor of Civil and Environmental Engineering in the Lyle School of Engineering. Professor Story is involved in numerous programs and initiatives, including the Smart Infrastructure Innovation Initiative with Garland Independent School District. Dr. Story encourages student involvement and leadership in his work.

Alison Wood | Olin College of Engineering

Dr. Alison Wood is an assistant professor of Environmental Engineering at Olin College of Engineering. She is a distinguished researcher in the fields of both water and sanitation, as well as a researcher and practitioner in using interdisciplinary thinking and approaches to solving environmental and sustainability problems. Dr. Wood is also pursuing her interests in the areas of equity and justice through education and engagement with context and values. She earned a B.S. in Civil Engineering from Rutgers University. Dr. Wood then went on to earn a Master of Science in Engineering in Environmental and Water Resources Engineering and a Ph.D. in Civil Engineering from The University of Texas at Austin.
Connecting the Future

The “Connecting the Future” session outlined the Summit objectives and provided perspectives on the history of CE education, current state of the CE profession, and emerging future trends. A brief summary of the speakers’ recommendations is given below, but the reader is strongly encouraged to read the full summaries in the following sub-sections.

Summit Program Committee Co-Chair Kevin Hall, Summit Organization Committee Chair Barbara Minsker, and SMU Provost Steven Currall opened the session with brief welcome statements. Chris Luebkeman, Foresight, Research, and Innovation Leader at Arup Foresight, then gave a keynote about several emerging trends, including: the rapid pace of world change and the difficulties of predicting unintended consequences; the need for global stewardship; increasing automation; expanded stakeholder participation through social computing; new design criteria and the lack of uniform design solutions; decaying infrastructure condition; and the importance of critical thinking and reflection, communication and leadership skills, and systems analysis to address these challenges.

Next, Dr. Hall delivered the Summit charge:

Generating ideas, examples, and enthusiasm to spur the innovation needed in the CE profession for our rapidly evolving world.

Dan Linzell and Mary Roth, Co-Chair and Member of the Summit Program Committee, respectively, then gave historical perspectives on CE education. Drs. Linzell and Roth reviewed the history of CE curricula, changes made to reflect technology improvements, and previous reports and activities relevant to CE education.

After a networking break, a panel discussion on the state of the CE profession featured ASCE President-Elect K. N. Gunalan, Keith Jackson (then Vice Chair of the American Council on Engineering Companies), and Yvette E. Pearson (Chair of ASCE’s Members of Society Advancing Inclusion Council). The panel’s key observations included the:
• Need for emerging technologies and innovative approaches to address society’s complex challenges, including sustainable infrastructure in a global environment;
• Importance of conveying the relevance of civil engineering to these challenges;
• Necessity of diverse perspectives, fostered by inclusive organizational and educational cultures; and
• Increasing significance of oral communication skills.

Finally, David Dzombak, member of the Summit Program Committee, led the last “Connecting the Future” session that was focused on CE curriculum development. Dr. Dzombak made an opening statement asserting that innovation is possible within the current accreditation framework and that curricular flexibility is essential to advancing the field. Ken Fridley (Chair of ASCE’s Civil Engineering Body of Knowledge 3 [BOK3] Task Committee) provided an overview of the recently released BOK3. He said that universities and industry must partner on educational changes and educators must initiate that process. He also stressed that the BOK and accreditation criteria are not solely focused on licensure, as not all CEs pursue licensing as a professional engineer (PE).

Next, Audra Morse (Chair of the ASCE Committee on Accreditation Operations and an ABET Engineering Accreditation Commissioner) provided a more detailed overview of the BOK3. She emphasized that BOK3 added achievements in the affective (emotional) domain and broadened specialty education beyond formal undergraduate programs to graduate programs, mentoring experiences, and self-development beyond formal education.
Dr. Chris Luebkeman, Foresight, Research and Innovation Leader for Arup, kicked off the event with a thoughtful discussion on what is driving change around the world and how those drivers relate to the topics raised at the Civil Engineering Education Summit. He questioned whether society is learning as fast as the world is changing and, if not, postulated that byproducts caused by a gap between change and knowledge should be deeply thought about and tracked in some way.

Luebkeman presented items of interest to attendees that he’s learned as a thought- and innovation-leader in the engineering and architecture profession:

1. Change is constant; understanding its context is critical.
2. The future is always oversold and under-imagined. We must understand people and what they need from a temporal perspective.
3. Everything that is inconvenient will change and anything that can be automated will be. Humans innovate to eliminate and 70-75 percent of what is currently taught and done will become automated.
4. Participation is what shapes today’s world.

In his role at Arup, Luebkeman strives to maintain a culture of innovation. His group identifies and tracks disruptive technologies at the global, regional, national, and local levels, and determines if they are systemic, elemental, or fundamental. They focus on understanding higher order impacts of these technologies and he feels that educators should also be tracking these disruptive technologies.

Luebkeman presented 10 things he was thinking about:

1. Critical Thinking - he will hire a critical thinker over a booksmart candidate;
2. Communication - idea does not matter unless it can be explained;
3. Regenerative Design - need to focus on restoring what was unintentionally destroyed;
4. Expanded Optimization Criteria - focus on optimizing tools to reduce impact, such as carbon emissions;
5. Design Strategies - consider solution sets or families as no single solution or practice exists;
6. Infrastructure Oncology - need to restore infrastructure to restore society;
7. Systems Interaction - teach and understand how our systems interact with others;
8. Digital Transformation - the “buy/build it now” button for construction projects will be available in a few years;
9. Relevance - know how to maintain in a time of profound change; and
10. Leadership - must make responsible decisions at every level.

He continued by stating that, even in our technology-centered society where systems are being decentralized, augmentation is affecting more aspects of everyday life, and tasks are expected to be completed quickly, moments of “slowness” foster creativity. An engineer who couples creative thinking with augmented reality, scripting, and leadership skills and also recognizes the importance of global stewardship will be able to adapt to change and use their knowledge to innovate and produce results. These qualities will define future professionals.
Dr. Daniel Linzell, University of Nebraska-Lincoln, and Dr. Mary Roth, Lafayette College, provided historical perspective, briefly touching on the history of civil and environmental curricula, using their own schools as case studies, and on ASCE conferences and activities focused on higher education.

Roth compared Lafayette College course catalogs from 1873 and 1980 to speak to a reduced focus on the humanities and social sciences. Linzell compared University of Nebraska-Lincoln curricula in 1980 and 2019, noting inclusion of profession-focused freshman seminars and senior capstone courses. He also highlighted additional, albeit limited, changes reflecting technology improvements and that additional requirements of curricula may result in a loss of flexibility.

Roth and Linzell provided excerpts from the 1995 Conference report, including recommendations that focused on faculty pedagogical training, industry engagement, and project-based learning. These recommendations ultimately led to development of the ExCEEEd program, formation of industry advisory boards, and emphasis on creating a senior capstone course.

Other important engineering education activities by other groups between 1995 and 2019 highlighted non-technical skill goals and requirements, including:

1. ABET 2000 Engineering Criteria, 2016 revisions to the Program Criteria for Civil Engineering, and 2019 revisions to ABET EAC Student Outcomes: These collectively addressed the need for (a) student understanding of engineering solutions in a global, economic, environmental, and societal context; (b) student exposure to an additional area of science, as well as management, business, public policy, and leadership concepts; (c) application of probability and statistics to address uncertainty; and (d) including principles of sustainability in design.

2. ASCE’s Civil Engineering Body of Knowledge, Editions 1-3: These works demonstrate the continuous evolution of topics that should be taught in civil engineering, how they should be categorized, and expected student levels of attainment. In addition, the CEBOK has a continuing emphasis on understanding business, policy, and leadership principles, and more recently focuses on professionalism, ethics, sustainability, data analysis, and risk and uncertainty.

3. NAEs Educating the Engineer of 2020: Showed the importance of producing engineers who are technically creative, agile, resilient, and flexible to address societal challenges, and the subsequent need to “reengineer” engineering education to address how students learn as well as what they learn.

4. ASCE’s Vision for Civil Engineering in 2025: These reports illustrated the desire to have higher education produce master builders who are: (a) mentored by practitioners, come from diverse demographics and disciplines, are able to work in a distributed global setting, and vocally advocate for economic growth; (b) stewards of the
environment who focus on sustaining the natural environment, consider resource consumption impacts and cross-border environmental effects, focus on social equity, and consider financial impacts of environmental actions; (c) innovators who facilitate multi-disciplinary research into civil engineering issues; (d) managers of risk who embed risk assessment and management methodologies as core knowledge and skills; and (e) leaders in public policy by utilizing continuing education, mentoring, and workplace opportunities to improve knowledge and skills.

5. MIT’s Global State of the Art in Engineering Education: Emphasized the need for students to be provided with a range of opportunities to work across nationalities and cultures.
The first panel discussion focused on the state of the profession featured K. N. Gunalan, ASCE President-Elect, Keith Jackson, American Council of Engineering Companies, and Dr. Yvette E. Pearson, Rice University. Dr. Kevin Hall served as moderator of the session.

Gunalan stated that our society depends on civil and environmental engineers as we are the stewards of infrastructure and collectively have substantial impact on society. He stated that the profession must be trusted to provide frank solutions to technical problems that are presented with confidence to our elected and appointed officials. Gunalan emphasized the importance of sustainable infrastructure in a global environment and the need to develop a diverse group of future engineers who can compete in the global environment. He indicated that ASCE is working to better prepare individuals for this environment via development of professional certifications and credentialing opportunities. Gunalan also provided an overview of ASCE activities focused on the future of the profession, including Dream Big, the Future World Vision, and Engineer Tomorrow, and stated that their focus is to “help you matter more and enable you to make a bigger difference.”

Jackson spoke to the future of the profession from an industry perspective, sharing a recent competition where a firm asked engineering staff employed for less than five years and under age 30 to design the building of the future. In the winning team’s process, the client provided the desired specifications and Artificial Intelligence was used to design, manufacture, and construct the building. Jackson wondered where engineers fit into this process and, ultimately, what an engineer’s role in society will be moving forward. Jackson stated that exponential change is occurring and as a result, it becomes difficult to identify what is happening next week. Given this context, when hiring new engineers Jackson wants individuals who have a “sparkle in their eye,” exhibit fundamental levels of understanding of important concepts, and can use those skills in unique ways to “connect the dots” to solve problems using new and innovative approaches. He recognizes that dealing with rapid change is challenging for educators but ultimately feels that, if one topic could be taught, it should be verbal communication—be it with peers, unfamiliar individuals or groups, clients or the general public—as it is an essential skill both now and in the future. Attracting the engineer of the future to our profession necessitates clearly conveying that civilization needs civil and environmental engineers to survive and thrive while also demonstrating that we solve problems that require skills to “connect the dots.”

Pearson spoke to the importance of diversity, equity, and inclusion to the future of the profession. She stated that optimal solutions to major problems need diverse perspectives and that, given changing demographics and increasing need for engineers, ensuring that the field is diverse and inclusive is an imperative and is everyone’s job. Diversity goes beyond gender, age, race, and ethnicity, and should be an end goal, not just an initial goal. To accomplish this, diversity and inclusion must be embedded in civil engineering curricula. Pearson stated that true diversity will occur via development of an inclusive and equitable culture involving open communication and a climate conducive to success for
all. She indicated that equity is different from equality in that equality focuses on treating everyone the same, while equity focuses on treating everyone fairly. Pearson reminded Summit attendees that: diversity and inclusion is part of the ASCE Code of Ethics; engineering teams are defined as diverse in the ABET Engineering Accreditation Commission’s general criteria; and that reducing inequalities is United Nation’s Sustainable Development Goal 10. To ensure that we are teaching engineers to engineer inclusively, educators can evaluate culture and climate, practice inclusive teaching, be transparent, require training, and identify and employ best practices now.
The first day concluded with a session on civil and environmental engineering curricular development. Moderator Dr. David Dzombak, Carnegie Mellon University, emphasized that civil and environmental engineering educators should remember that they have the ability to innovate in the current accreditation framework, and that curricular flexibility is important to move pedagogical processes and, ultimately, the profession forward.

Dr. Ken Fridley, University of Alabama and chair of the Civil Engineering Body of Knowledge Task Committee, provided an overview of how the Civil Engineering Body of Knowledge revision process related to the ABET Engineering Accreditation Commission (EAC) general criteria and the civil engineering program criteria, and ASCE’s process and calendar for development and revision of the Civil Engineering Body of Knowledge and civil engineering program criteria. Fridley stated that adequate preparation of future civil and environmental engineers is ultimately a partnership between academia and industry but that educators initiate the process. Fridley also emphasized that we are a profession of practice, not one that emphasizes licensure. He expressed concern that educators interpret the CEBOK, ABET EAC, and CEPC as being solely focused on licensure and emphasized that those involved with the development of these recognize that not every civil and environmental engineer is on a path toward licensure.

Dr. Audra Morse, Michigan Technological University, provided an overview of how the Civil Engineering Body of Knowledge, Third Edition, is organized and how it was developed, reviewed, and revised. She stated that the Task Committee charged with its creation identified essential foundational, fundamental, technical, and professional outcomes for future civil and environmental engineers. The Task Committee subsequently focused on appropriate levels of achievement for the specified outcomes. For some outcomes, levels of achievement were specified in the affective as well as cognitive domains. Morse stated that civil engineering education included both formal undergraduate and post-graduate education along with mentored experience and self-development. She also detailed the organization and progression toward achievement in the third edition of the CEBOK, and provided examples as to how that progression could fit into curricula. She emphasized three aspects related to the new Body of Knowledge: the importance of mentorship; the addition of affective domain levels of achievement for selected outcomes; and that individual civil and environmental engineers ultimately must commit to their own self-development as an essential part of achieving the full body of knowledge. Morse ended by stating that (a) a formal undergraduate curriculum can only teach so much, (b) mentoring and curiosity must be cultivated, and (c) innovation is a professional responsibility.
A second plenary session on ASCE’s Future World Vision kicked off “Conceiving the Future” on day 2 of the Summit. Tabletop breakouts to brainstorm education opportunities and challenges related to the Future World Vision followed. Two fast-paced sessions presented ideas and activities focused on civil and environmental engineering curricular innovation using provocative and nontraditional methods.

“Mini TED Talk” leaders provided their perspectives on how extracurricular contributions, holistic approaches to the total educational experience, and full integration of classroom and out-of-classroom work would enhance student learning.

A PechaKucha session involved 10 institutions specifically describing how they are working to enhance innovation in their programs, and ultimately foster innovative thinking by students in those programs. More detailed recommendations from each speaker are given in the sub-sections below.
Day two of the Summit began with Jerry Buckwalter, Northrop Grumman (now ASCE’s chief operating and strategy officer), who outlined ASCE’s Future World Vision initiative and associated educational opportunities and challenges.

Buckwalter stated that the profession is in the early stages of disruption from a number of technologies and advancements, including the Internet of Things, technological autonomy, machine learning, and transformative new materials. He stated that the aerospace industry adapted to accommodate these disruptors a number of years ago, and ASCE leaders recognized that similar adaptation needed to happen in civil and environmental engineering, leading to the creation of the Future World Vision. Buckwalter stated we live in a world of convergence and that civil and environmental engineering professionals must be able to collaborate with one another, with other engineering disciplines, and with non-engineering partners.

The Future World Vision development started with scenario planning, producing a number of future worlds involving phenomena that would overwhelm today’s technology, and then postulated what it would take to arrive at those worlds. These exercises indicated that, for the profession to survive, civil and environmental engineers would urgently need to: prepare for resilience for diverse environments and changes in demographics and urbanization; incorporate advances in materials, computing tools, technologies, and engineering and construction processes; embrace digital models and big data use; increase the pace of innovation and lead change; understand systems dynamics and nature of systems and system integration; create linkages, alignments, and collaborations with varied engineering and non-engineering disciplines; and attract new talent while continuously training and growing careers.

The planning exercise identified six trends that would have the biggest influence on civil and environmental engineering over time: alternative energy; autonomous vehicles; climate change; high-tech construction; material sciences; and smart cities. Future worlds will be created by looking at a number of potential outcomes associated with each trend and grouping them into possible spaces. Buckwalter indicated that it was difficult to predict when things would happen, and as a result, exercises focused on identifying “signposts” where events could lead to multiple future scenarios and how each would be dealt with.

It was decided to create narratives and experiences associated with each future world so that science and engineering jargon could be translated into scenario impact. Buckwalter stated that five plausible cities were identified, each occurring at a set time in the future: a megacity; a rural city; a floating city; a frozen city; and an off-planet city. Prototypes for each future city will be created using virtual reality, with mega- and floating cities being completed to date. It is hoped that an operational construct will be created that looks at the impact of each prototype on civil and environmental engineering down to the street level. He indicated that immersive, 4D computer virtual labs are being created for each prototype that will become more robust as they simulate engineering challenges and support learning and development via use case activities. Buckwalter stated that, ultimately, these virtual labs will highlight civil and environmental engineering’s role in addressing future world challenges, allow for crowd-sourced solutions, permit model growth and improvement, and integrate public policy optimization tools to include cost, social benefit, and return on investment information.
Four 10-minute mini TED talks provided perspectives on innovation, particularly how to engage, excite, and enlighten the engineering student of today and tomorrow. Presenters hailed from different types of institutions across the country and were at different points in their academic careers; as a result, they contributed a unique blend of perspectives and ideas. Participants shared a common passion for high-quality, holistic instruction and learning inside and outside the classroom.

Outside the Academy
Marc Hoit, North Carolina State University
Dr. Hoit indicated that the impetus behind ASCEs Innovation Contest was to bring people together to develop and nurture forward-looking ideas to address major infrastructure issues. He stated that the profession self-selects thinkers who are not intrinsically creative and postulated that a large portion of the work civil and environmental engineers complete does not require a Professional Engineer’s license. Dr. Hoit emphasized the contest is open to anyone and that developed ideas must be presented in a number of creative different forms, with the penultimate activity being a pitch contest. He stated that one of the contest goals was to develop engineers who can communicate an idea in three minutes.

College/University Perspective
Alison Wood, Olin College
Dr. Wood indicated that current engineering curricula are organized in blocks and that the blocks are oftentimes disconnected. She stated that these blocks must disappear and emphasized the need for disciplinary integration in engineering higher education so that future engineers’ systems and transdisciplinary skills can be developed and strengthened. Olin develops and strengthens these skills by offering a number of co-taught, transdisciplinary systems engineering courses and by integrating design thinking and science and the humanities throughout the curriculum. Dr. Wood indicated that Olin still has topics that are not well integrated into the transdisciplinary model, such as engineering ethics, and that they are working to address this issue. She stated that project-based learning is one way for integration to occur. Dr. Wood ended her talk by emphasizing that civil and environmental engineering’s relevancy as a systems-based field can be demonstrated using a number of approaches, such as focusing on sustainable systems.

Faculty Perspective
Brett Story, Southern Methodist University
A specific initiative focused on exposing future engineers to civil and environmental engineering innovation and on developing essential, systems thinking skills in high school students was summarized by Dr. Story. The Smart Infrastructure Innovation Initiative (S3i) helps produce high school students who are excited about the field and better prepared for engineering curricula through experiential learning and the creation of a continuum that attempts to blur the lines between secondary and higher education. Students focus on the development of solutions to real-world problems in an interdisciplinary way.
NSF Workshop Perspective
Lucio Soibelman, University of Southern California

The final mini TED talk was given by Dr. Soibelman, who summarized the recently completed NSF workshop and listed identified issues and outcomes. The intent was to highlight how AI is affecting the civil and environmental engineering field and, subsequently, curricula. Dr. Soibelman stated that a number of issues associated with AI integration into the field and curricula were identified, including a professional culture that does not promote sharing data, other fields driving change, a lack of curricular emphasis on development of programming skills, a dramatic increase in data science programs and subsequent reduction in the number of civil and environmental engineering students who have an interest in programming and AI, and that our field is stuck on basic science skills while other engineering fields have advanced to development of new skills. Outcomes included suggesting changes to training and curriculum, such as offering programming and AI tutorials to students at technical conferences, classifying data science as a basic science, and working with other, similarly minded groups and organizations. Dr. Soibelman indicated that the group identified clear action items that included increasing data literacy by suggesting updates to curricula to include development of sensor technology and data literacy skills, creating faculty development opportunities in the machine learning, AI, and data science domains, developing relationships with key data science and AI industry partners, and development of co-curricular activities with data science programs.
ENGAGEMENT 3

PECHAKUCHAS

Curriculum Innovation

A “PechaKucha” is a fast-paced type of presentation in which speakers have 20 slides timed and set to change over after 10 seconds. This format is good to cover a lot of information quickly and from multiple perspectives. These brief presentations were packed with information, delivered concisely and quickly. The following pages are the abstracts for each speakers’ presentation. These speakers were selected by the Conference Program Committee from submissions to a call for abstracts sent to civil engineering department heads in the United States.

“Using the Grand Challenges of Engineering to Complement a Civil Engineering Curriculum”

Angel Perez
Assistant Professor of Civil Engineering
Quinnipiac University

The Civil Engineering department at Quinnipiac University designed a course sequence to integrate the non-technical aspects of engineering practice into the curriculum. This sequence parallels the technical content of the curriculum and uses the fourteen National Academy of Engineering (NAE) Grand Challenges as context. These complex and multi-disciplinary problems must be solved by engineers and non-engineers who have a thorough understanding of the technical and non-technical issues associated with the challenges. Civil Engineering programs traditionally dismiss non-technical issues and focus on technical content. Non-technical content may be treated only in general education courses or considered only as an afterthought for accreditation. In the Quinnipiac course sequence, students identify non-technical issues in the Grand Challenges in their introductory engineering course. Students then choose general education courses relevant to those issues. In their last semester, students take a non-technical, mixed enrollment capstone course which mirrors their Major Design Experience. Non-engineering students enrolled provide non-technical knowledge to help solve these issues. Engineering students are able to focus on societal, ethical, and economical issues with the help of peers and the instructor. This develops skills necessary in engineering practice and valued by employers. We believe this approach best prepares students for their post-graduate careers.

“Achieving Change in Civil Engineering Education: Building Community and Expertise to Change Educational Practices and Culture”

Caroline Bennett, Ph.D., P.E.
Director, School of Engineering
University of Kansas

In this PechaKucha-style presentation, implementation strategies and results will be shared for a highly successful, multi-level change initiative at the University of Kansas. The change initiative has been aimed at encouraging and supporting shifts in teaching practices, culture, and curricular innovations toward evidence-based practices and approaches that have been shown to support student progression and retention, learning outcomes, and diversity.

The change model has relied on an approach that focuses on departments as the most influential locus for change. There have been two cornerstones to the approach: (1) discipline-situated experts were embedded into departments as change agents to collaborate with faculty, and (2) meaningful learning communities were built out around the embedded experts and departmental faculty to leverage efforts and accelerate change processes. In this model, the embedded experts were not instructional designers, but Ph.D.-holders in the discipline they were embedded within as change agents. The transformation initiative has been led in Engineering by a faculty member from Civil Engineering (the presenter), and notable achievements have been particularly emergent from that department. Specific implementation strategies in Civil Engineering will be shared, along with results that have been achieved—transformed teaching culture and practices, curricular innovations, and improved student outcomes.
“Developing Inclusive Content for Technical Courses”

Tiago Forin
Engineering Clinic Instructor and RevED Project Coordinator, Rowan University

The National Science Foundation awarded the Revolutionizing Engineering and Computer Science Departments (RED) grant to Rowan University’s Civil and Environmental Engineering (CEE) Department in 2016. The RED grant funds a five-year longitudinal study for examining the climate of diversity and inclusion in an engineering program and creating interventions and tools to improve that climate. The RED grant also enables the means to initiate broad institutional changes to the entire university modeled after the initiatives created by the engineering department. Now in the third year of the study, Rowan University has taken steps to improve the climate of diversity and inclusion through the use of developing course content that focuses on global/historical examples and students’ personal experiences. These particular pathways for developing inclusive content are based on a few concepts taken from a framework of critical pedagogy. In critical pedagogy, students are given an opportunity to make personal connections to the content being taught and develop a broader perspective of the applications of that content knowledge to the world around them. Our efforts have included multiple assignments and projects across different CEE courses in material science, transportation, construction materials, and statics that allow students to explore deeper connections with the technical engineering concepts.

“A Four-Year Design(-Build-Test) Thread”

Sarah Christian
Assistant Teaching Professor
Carnegie Mellon University

David Dzombak
Hamerschlag University Professor and Department Head
Carnegie Mellon University

Through a sequence of four project courses threaded with key design-related themes, undergraduates gain hands-on engineering experience as they apply knowledge from core courses to projects in each year of the curriculum. The repeated opportunities to solve ill-defined, open-ended problems help students to become more comfortable with teamwork, self-guided learning, communication, and the ambiguity that permeates real projects. By building and testing their designs in each of these courses, students learn the importance of effective design communication, strategies for addressing uncertainty, planning, and constructibility. The project courses focus on the same design skills and processes, but the level of complexity of the learning objectives increases as students advance through the sequence. The projects span the breadth of the field, providing students with a sense of the diversity of challenges engaged by
civil engineers and their importance to communities and individuals. The opportunity to collaborate through these projects helps to build a strong cohort early in the curriculum. Both student agency in their learning, as well as their confidence increase as they frame and solve problems collaboratively. Students are able to build a portfolio to demonstrate specific experience on a range of projects and their ability to be flexible, adaptable, and creative in addressing modern challenges in civil engineering.

“Bridging the Gap in Construction Education”

Clifton Farnsworth
Assistant Professor
Brigham Young University

In some parts of the world (including within the US) construction management has somewhat evolved as a separate discipline away from civil engineering. In many ways this has created an academic gap, although the two disciplines are mutually dependent and necessarily complementary within the same industry. Construction education within academia takes many different forms: there are a few true construction engineering programs (including a few more recently established); some civil engineering programs have a construction track; and in some cases, construction management programs coexist with civil engineering programs. However, it is far more common for higher education institutions to have separate civil engineering and construction management programs that interact very little with each other. Unfortunately, this has created a general academic gap, especially regarding infrastructure and other heavy/civil-related construction curricula. When separated, neither construction management nor civil engineering programs tend to provide sufficient depth for the infrastructure and heavy/civil construction sub-discipline. This presentation is intended to define and demonstrate this gap, provide models of how a few institutions are currently bridging it, and ultimately begin a discussion on ways that this gap can be bridged collectively within civil engineering education at large.

“For the Times They are a-Changin’: Curriculum Broadening to Keep Civil and Environmental Engineering Relevant”

Jerome P. Lynch, Ph.D.
Donald Malloure Department Chair of Civil and Environmental Engineering
University of Michigan

How we train civil and environmental engineering (CEE) students is simply not keeping pace with the technological changes demanded by the profession. Freshman students often express strong enthusiasm for career paths focused on “sustainability” and “smart cities,” yet when they select...
majors they are going to other engineering disciplines because they feel these disciplines better prepare them than does CEE. Seeing this trend as a canary in the coal mine, we have set off to transform our accredited undergraduate programs to empower our graduates with a broader set of tools necessary for career success. First, we have transformed many of our math and science sequences to teach traditional principles through the use of novel themes. For example, we converted our courses in probabilistic methods and computational methods to courses focused on teaching the same concepts but within the context of machine learning and data analytics. Second, we added new courses to the curriculum needed to expand the toolset of students. For example, we have a required course in sensors that teaches electrical circuits using embedded systems. Finally, we have partnered with other departments to create major-minor combinations that broaden the students’ education. For example, we offer a program in smart cities that has students major in CEE but minor in computer science. These changes have driven strong growth in our undergraduate enrollments over the past five years.

“THINK-PLAY-HACK: A New Model for Teaching Data Science Skills to CEE Students”

Barbara Minsker
Chair, Civil and Environmental Engineering
Southern Methodist University

“THINK-PLAY-HACK” (TPH) is a paradigm for innovation inspired by the group-dynamics research of University of Chicago sociologist James Evans. Over 3-5 days, observers and community experts embed themselves in the THINK-PLAY-HACK model, working on ideas and data analytics alongside faculty and students.

- PLAY: Exploring available data, methods, algorithms, and theories. Ends with competitive team pitches on project ideas.
- HACK: Teams analyze and visualize data and present findings. Teams compete for the most insightful results.

The first TPH pilot focused on infrastructure equity and brought more than 30 participants to SMU for a 3-day intensive session in January 2019. Their results brought new insights and directions to the infrastructure research, the seeds of new publications, and provided a significant educational experience for both undergraduate and graduate students.

“Mapping the Future of Civil Engineering Innovation”

John Schemmel, Ph.D., P.E., FACI
Bruce and Gloria Ingram Endowed Chair in Engineering
Texas State University

With the fall 2019 semester, Texas State University will begin offering a new undergraduate Civil Engineering program with a holistic emphasis on urban-based, technology-enhanced infrastructure (TEI). The program curricula is transformative in that it combines a strong foundation in traditional Civil Engineering principles with a unique education in the emerging sub-discipline of smart infrastructure technologies. Embedded throughout the curriculum, extending longitudinally from first-year introductory courses through senior-level electives, are concepts and curricular components related to TEI. In addition to classic analysis and design of infrastructure assets, graduates will have experience with a wide range of sensor devices, data transmission and storage systems, big data and machine learning protocols, predictive modeling, and automated infrastructure management technologies. Moreover, the curriculum includes a five-course sequence addressing the breadth of concepts associated with technology-enhanced infrastructure. Developed in cooperation with Geography, Mathematics, Computer Science, Construction Science and Management, Biology, and Electrical Engineering, several of the program’s required and elective courses are truly interdisciplinary. A panel of external reviewers, which included ASCE past President Andy Hermann, described the program in their final report as “distinguished from most, if not all” Civil Engineering programs in the nation by “forward thinking and proactive planning.”
One of the goals of the Summit was for ASCE to walk away with actionable items as civil engineering looks to the future of education. ASCE partnered with Southern Methodist University’s Master of Arts in Design and Innovation (MADI) program to develop a workshop that would allow Summit attendees to share their opinions regarding civil engineering education priorities.
Rationale of the Process

Human-Centered Design is one of several processes for making sense of and improving complicated scenarios. When tasked with helping ASCE vision plan the future of civil engineering education, it was clear we needed to get each individual from the large group of attendees to feel accounted for and heard as a part of the entire process. One of the standard methods of Human-Centered Design is surfacing assumptions and allowing for personal reflection first. This allows for groups of people to work together to reveal commonalities and starting points.

The goal of the workshops was to allow everyone time from the beginning to reflect on what they had been learning from the Summit and what ideas they’d brought to the table on their own. After individual opinions and thoughts were captured, people shared those with others at their table. From there common themes based around the People and Needs emerged. Then those themes were put together as statements of opportunity that would be acted on in the future. This process of starting with the individual point of view and distilling down to a few sets of common ideas helped to keep every attendee engaged, validate multiple opinions, and kept the group focused on future planning.

Point of View Statements

We started the process by asking all attendees to write out their own “Point of View” statements. Of the 193 people in attendance, 172 sheets were filled out. The goal of this activity was to capture a crowd-sourced perspective of the current state of civil engineering education and its future. This created an opportunity for individuals to share their personal perspective before understanding the collective perspective of ASCE members as a whole. We prompted attendees with a series of questions that specifically addressed some of the larger, more abstract philosophies surrounding the experience of civil engineering education.

- To you, what is the purpose of civil engineering education and who is it for?
- What are the focus areas of civil engineering of the future?
- What are some aspirational wishes you have for the future of civil engineering education?
- What are some curiosities you have for the future of this field?
- What are some of the wildest ideas you have for the future of civil engineering education?

People + Needs

The next stage in the process was to have participants pair up with a table partner and share their Point of View statement sheets. Pairs were asked to articulate the “people” and the “needs” identified in their point of view statements. Once table partners had identified their people and needs, they were asked to reconvene with the rest of their table group (on average eight individuals) to combine and articulate common themes. An example of people and needs, and how they were synthesized into themes.
Opportunity Statements

The next step of the process drops the “people” and “needs” into an opportunity statement that looks like this:

EXAMPLE

Graduate Students need to have real-world experiences

so that they can get a high-quality first job.

The goal for this section is to start identifying gaps and opportunities for the field of civil engineering and education development, as well as alignment of interest across tables.

Synthesize Opportunity Statements

This synthesis of the Opportunity Statements was conducted by the ASCE Civil Engineering Summit Executive Committee and a team of facilitators from the Design and Innovation program at SMU. This team took the collection of 156 opportunity statements, as written by the table groups of attendees, and synthesized them down to 20 opportunity statements that are intended to inform future actions for ASCE.

The ASCE Executive Committee used the spreadsheet to do a first-round vote for which statements they felt were most relevant and useful; the MADI facilitators included their thoughts on which opportunities were viable for action and had the most promise for innovative ideas.

This left 28 opportunity statements. In order to reduce this list down to the 20 most relevant statements, each ASCE Executive Committee member was given three votes to narrow down the list. Both groups then worked together to refine the wording of the final statements.

Ranking the Top 20 Statements

When the Summit reconvened on Day 3, the ASCE Civil Engineering Summit Executive Committee shared the 20 opportunity statements (listed in the next section). Each individual attendee was then asked to rank (via electronic survey) the 20 statements according to what they felt was the highest priority for ASCE. The results of this vote were projected in the room.

Product Development:
Table Brainstorms

Each table was randomly assigned one of the Top 20 statements (two tables were duplicates) and asked to generate potential solutions and recommendations. As they brainstormed, tables were asked to consider the following:

- **Who**: What people, organizations, or groups could be involved
- **Actions and verbs**: What actual actions need to take place and what needs to be done
- **Short- and long-term action items**: What could this wild idea look like in the short term (5-12 months) or long term (10-25 years)
- **Wild ideas that may surface during the process**: While brainstorming on some logistic ideas, wild ideas tend to pop up more organically and need to be captured and built upon.
1. **Students need to learn systems thinking so that they are prepared for current and future societal challenges.**
 - Create “Smart Living Labs” that students engage in regularly

2. **Students need to develop people-focused skills so that they can design infrastructure that is relevant to society.**
 - Promote empathy in students by having faculty provide the example. This can be achieved by providing empathy training for faculty (example through exec ed), prioritizing people skills in hiring, and having faculty without people skills lose tenure
 - Students need to develop people-focused skills so that they can design infrastructure that is relevant to society
 - Every course has a community-based project that includes a public forum of stakeholders
 - Leadership (including leading without formalized authority) is included in every CE curriculum
 - Empathy becomes an essential student/ABET outcome and is an essential criteria in hiring, promoting, and faculty development
 - Faculty integrate professional skills into existing curriculum in order to ensure CE’s ability to drive societal change
 - Schools provide and faculty engage in professional development to build capacity for teaching and applying people-focused skills
 - Schools and faculty value people-driven research and education to show the value in various ways, including incentivizing it

3. **Faculty need to emphasize systems thinking so that sustainable, socially just infrastructure can be designed.**
 - Require community service as part of the engineering curriculum early on so they can see the socio-economic impact our projects have
 - Require students to attend public meetings to gain a better understanding of the critical component and the non-technical components impacts of a project
 - Engage non-engineers to teach systems thinking
 - Freshmen find global problems to solve as engineers with social/environ/systems awareness

ENGAGEMENT 4

Moving Vision to Action 2

Top 20 Opportunity Statements with Wild Ideas

From the workshop and committee group work, 20 opportunity statements were generated and then voted on in priority order. Once the priority order was determined, each statement was assigned to a table to brainstorm wild ideas that could be used to take that statement from vision to action. Below is each statement along with the wild ideas that were reported out.

1. **Students need to learn systems thinking so that they are prepared for current and future societal challenges.**
 - Create “Smart Living Labs” that students engage in regularly

2. **Students need to develop people-focused skills so that they can design infrastructure that is relevant to society.**
 - Promote empathy in students by having faculty provide the example. This can be achieved by providing empathy training for faculty (example through exec ed), prioritizing people skills in hiring, and having faculty without people skills lose tenure
 - Students need to develop people-focused skills so that they can design infrastructure that is relevant to society
 - Every course has a community-based project that includes a public forum of stakeholders
 - Leadership (including leading without formalized authority) is included in every CE curriculum
 - Empathy becomes an essential student/ABET outcome and is an essential criteria in hiring, promoting, and faculty development
 - Faculty integrate professional skills into existing curriculum in order to ensure CE’s ability to drive societal change
 - Schools provide and faculty engage in professional development to build capacity for teaching and applying people-focused skills
 - Schools and faculty value people-driven research and education to show the value in various ways, including incentivizing it

3. **Faculty need to emphasize systems thinking so that sustainable, socially just infrastructure can be designed.**
 - Require community service as part of the engineering curriculum early on so they can see the socio-economic impact our projects have
 - Require students to attend public meetings to gain a better understanding of the critical component and the non-technical components impacts of a project
 - Engage non-engineers to teach systems thinking
 - Freshmen find global problems to solve as engineers with social/environ/systems awareness
4. Civil Engineering faculty need to integrate creativity into the curriculum to build thought leaders and innovators.
 - End tenure
 - In-department peer review of course contents and teaching methods, to identify opportunities for innovation
 - Employ more open-ended problem-based learning incorporating ambiguity and uncertainty
 - CE departments teach our own service courses (e.g., math, physics) to include CE context and applications
 - CE faculty need to integrate creativity into the curriculum to build thought leaders and innovators
 - Faculty need to emphasize systems thinking so that sustainable, socially just infrastructure can be designed.

5. Faculty need to adopt evidence-based instructional methods so that students can develop critical thinking skills in order to evaluate alternative approaches of civil engineering like sustainability and equity.
 - Promotion and tenure should be based on teaching innovation and effectiveness as much as it is on research scholarship
 - All courses, throughout the curriculum, should have project-based learning

6. K-12 students need to be exposed to the challenges of the future so that as future Civil Engineers they are equipped to solve them.
 - Netflix CE reality series about educators and practicing professionals to create excitement and outreach around the profession
 - Develop CE infrastructure video game
 - Eliminate CE (and other engineering) majors and organize by problems
 - Replace concrete canoe and steel bridge competition with spark by ramboll
 - Develop CE-centric K-12 curriculum that is aligned with teaching standards

7. Faculty need to provide learning opportunities inside and outside the classroom so that students can build portfolios of life experiences.
 - Create an entire semester of courses (on campus/off campus) that allow students to focus on a major engineering challenge, such as a “Grand Challenge,” Sustainable Development Goal, or Future Vision scenario
 - Turn the classroom into a community resource to provide real-world data (sensors/measurement) for CE studies/projects (preliminary/exploratory-type work)
8. Civil Engineering students need to exhibit the attitudes and behaviors of innovation so that they can respond to future challenges.
 • Structural engineering will drop prescriptive codes and adopt performance-based design
 • ASCE develops and funds “Go Fund Me”-type student innovation projects
 • Freshmen find global problems to solve as engineers with social/environmental/systems awareness

9. University administrators need to be adaptable and offer resources so that new curricular approaches are encouraged.
 • New curriculum approaches supported by eliminating departments
 • Industry endows/supports a course—“Faculty as Race Car Drivers”
 • Apple wallet (discount) by class
 • Funding/endowment to support teaching ASCE and other opportunities
 • National CE curriculum—1 individual who teaches class

10. Faculty need to emphasize systems thinking so that sustainable, socially just infrastructure can be designed.
 • Bring in clusters/cohorts of people who represent an underrepresented group (at multiple levels, e.g., faculty, students, etc.)
 • Focus on inclusion/retention once you have them
 • Provide facilities: daycare, lactation rooms, gender neutral bathrooms
 • Continue to increase the pipeline at all levels and rethink (really rethink) admission requirements and processes
 • Work to change the campus climate/culture

11. Underprepared students need access to supplementary education so that they can be successful in Civil Engineering and careers.
 • Take Engineering supplemental education to the street, on wheels, in libraries, in boys/girls clubs
 • Flip Bloom’s Taxonomy — start at top of pyramid with the problem/opportunity
 • Bring math/writing supplemental to kids
 • Industry gap year/time (arranged by university)

12. Universities need to develop a culture of equity and inclusion so that we produce a more diverse future workforce.
 • ABET requires each student to have at least one high-impact experience (e.g., service-learning, internship, co-op, study abroad, EW8)
 • Engineers need help from experts to do diversity and inclusion correctly-partner with experts to get it right
 • Faculty work to create a sense of community by being open and welcoming
13. Civil Engineering faculty need to develop more flexible assessment criteria so that curricula can respond to worldwide challenges and opportunities.
 - Incorporate self-assessment and meta-cognition training for students to assess themselves, identify gaps, and fill these gaps to address emerging problems
 - Do away with grades so that students can embrace failure as part of learning

14. Accrediting bodies need to foster adaptive programs so that curricula can rapidly address current and future societal needs.
 - Mandate large-scale change regularly
 - Eliminate tenure
 - Eliminate accreditation
 - Require accreditation training as part of Ph.D. programs
 - Have teaching-faculty take lead in curriculum

15. ASCE needs to provide a repository of global teaching best practices so that the rate of innovation is increased.
 - ASCE/faculty/industry professionals develop a mobile app that serves as a repository for best practices
 - Create 1-minute videos on innovative teaching methods and push to phones via ASCE
 - Faculty get paid for creating innovative content for repository
 - Industry will develop content for repository
 - Online content for Intro to Civil Engineering course
 - CE Division of ASCE come out from their comfort zone and gather Best Practices on CE innovation

16. Civil Engineering departments need to better communicate the application of a CEBS degree so that students see its value in any career path.
 - Civil Engineers are in movies, TV series, and/or are a Muppet on Sesame Street to give instant recognition and awareness to a wide audience.
 - CE departments need to better communicate the application of CE degrees so that students see its value in any career path
 - Expand our definition of CE and Engineers—include computer scientists, software engineers, political scientists, policymakers.
 - CE degree is a springboard
 - CEs should organize to elect CEs to public offices to provide creative solutions to infrastructure needs as well as raise the profile of CE for potential CE students
17. Faculty need to identify new metrics for scholarly productivity so that promotions are awarded to those addressing society’s future needs.
 - University leaders need to develop better ways to measure teaching to create alternatives for tenure and promotion
 - Government gives $10B to CE department
 - Eliminate tenure/replacement
 - Don’t adopt #17 as is

18. Decision-makers need to remove regulatory roadblocks so that innovation can flourish.
 - In 2020, first civil engineer elected president.
 - Government commits to a “Man on the Moon” emphasis on infrastructure renewal and promises to commit resources to support that initiative
 - Forced sabbaticals with industry
 - Start a PAC for supporting CE running for office
 - Eliminate tenure
 - Secondary education not supported by property tax

19. Industry-University consortia need to provide startup opportunities with funding so that students can be energized (sparkle) by an entrepreneurial pipeline.
 - Provide opportunity for all students to build and design projects to solve community problems
 - Integrate entrepreneurship into other design projects (not just senior design)
 - Recognize that students create IP value -- manage those issues to focus on created value

20. Higher Ed Institutions need to form consortia so that emergent topics can be team-taught with virtual technology.
 - Organize a CE systems walkout for 1 day to convey the value of CE professionals
 - Re-brand CE as Systems Engineering
The Summit proposed a vision of civil engineering, defined at its most basic level:

Civil Engineering is a global, holistic profession that serves the needs of all people.

In the future-oriented focus of the Summit, it was agreed that the needs of people, and the contexts related to meeting those needs, are becoming increasingly complex in our ever-evolving world. Thus, the educational systems that prepare future engineers must also evolve to address this complexity.

Thematically, three goals emerged from synthesizing the opportunity statements. The field of civil engineering needs to:

1. Be a **Profession** that **serves** people;
2. Have a **Culture** that **includes** people; and
3. Provide an **Education** that **prepares** people to innovate.

As a pathway to achieving these goals, four major objectives emerged from the discussions and workshop activities. These objectives are described in detail below.

OBJECTIVE 1:
Reexamine, and potentially redefine, the domain of Civil Engineering.

A clear consensus among Summit participants is that the world is becoming increasingly complex – thus, the challenges faced by engineers are becoming increasingly complex. One aspect of this complexity relates to the interconnected nature of infrastructure, environmental, political, and social systems. Such interconnectedness is a major driver of the dissolution of traditional “boundaries” that define a particular engineering discipline. Summit participants dared to ask the question: “In the context of the mid-21st century, what is a civil engineer?” Two elements related to this most fundamental question reflect the impact of technological advancement and the evolving role of the civil engineer in society.

ASCE’s The Vision for Civil Engineering in 2025 (published in 2006) anticipates the evolutionary, holistic nature of the role of civil engineers:

“In 2025, civil engineers will serve as master builders, environmental stewards, innovators and integrators, managers of risk and uncertainty, and leaders in shaping public policy.”

An undergraduate civil engineering program is not sufficient to fully prepare a graduate to be a master builder, steward, innovator, manager, and leader. This is recognized in the *Civil Engineering Body of Knowledge, 3rd Edition* (CEBOK3), which calls for a combination of formal education, structured mentoring, and self-directed learning to position the civil engineer for career success. However, an undergraduate civil engineering curriculum provides the foundation on which to build the knowledge, skills, and attitudes of the future civil engineer.

It is clear that the already rapid pace of technological change and advancement will continue unabated – and very possibly accelerate. In his plenary remarks, Arup Foresight engineer/futurist Chris Leubkeman observed the mega-trend if it can be automated, it will be automated...” New tools and new computational and analysis techniques are being introduced into the profession at a rate beyond that to which most engineering education...
programs can react and adapt. Although this issue is not necessarily new, Summit participants struggled with the disparity between the current and anticipated pace of innovation in the profession versus that in education.

A major theme that emerged at the Summit related to technological advancement is the need to expand the domain of civil engineering. Three areas receiving significant attention by Summit participants included:

1. Learning new competencies related to emerging technologies that are rapidly changing civil engineering (e.g., data science, robotics, sensors, drones, and virtual reality), as well as the knowledge and skills needed to use those technologies.

1. Integrating more systems thinking into civil engineering education through real-world problem solving, project-based education, and high-impact experiences such as internships, service learning, study abroad, student organizations, and competitions.

1. Promoting a culture of innovation within the profession through more directed teaching of creative processes, entrepreneurship, and evaluation of risk as an integral part of curricula and mentored practice.

These Summit discussions give rise to a major implication for 21st-century civil engineering education: curricular flexibility. Indeed, “flexibility” emerged as another primary theme among Opportunity Statements related to civil engineering curricula, with five (5) of the “top 20” Opportunity Statements addressing the issue. Summit participants called for civil engineering departments to define for themselves a program of study to meet the needs of their stakeholders within very broad overarching guidelines. Such flexibility enables a more rapid response to technological changes in the profession; an integration of instruction addressing future roles of civil engineers; and an elevation of professional skills as a requirement of civil engineering education. These benefits must be balanced by a recognition of the benefit of having some degree of uniformity in education across the profession.

OBJECTIVE 2:

Elevate Professional Skills to a truly equal footing with technical skills.

Certainly, the need for strong professional skills has long been recognized by both civil engineering educators and practitioners.

The ASEE “Grinter Report” (1955) included two outcomes related to this concept:

1. “An insistence upon the development of a high level of performance in the oral, written, and graphical communication of ideas”

2. “A continuing, concentrated effort to strengthen and integrate work in the humanistic and social sciences into engineering programs”

The Summary Report of the 1995 Civil Engineering Education Conference contained numerous recommendations related to professional skills, such as:

1. “Emphasize the need for sensitivity to culturally diverse groups”

2. “Encourage students to convey the importance of engineering works to non-engineering students on campus”

3. “Recognize communication skills, leadership skills, management, and teamwork by creating awards for students”

4. “Provide learning from non-verbal communication and listening skills”

5. “Provide industry speakers to emphasize the importance of communication skills, leadership, management, and teamwork”

The CEBOK3, published in 2019, also recognizes this need. It includes six outcomes related to professional skills: communication, teamwork and leadership, lifelong learning, professional attitudes, professional responsibilities, and ethical responsibilities.

Multiple generations of educators and practitioners (1955, 1995, 2019) have thus recognized the necessity for professional skills in the successful civil engineer. It is curious, however, that these multiple generations were all moved to emphasize the need for increasing the level of professional skills in graduates – suggesting that the profession continues to lag in the development of these skills in our students.

Summit participants placed significant emphasis on this topic; of the 20 prioritized Opportunity Statements, seven (7) address professional skills and abilities. Moving forward, topics related to Professional Skills should be elevated in importance within curricula – to be thought
OBJECTIVE 3:
Develop a diverse, inclusive, equitable, and engaging culture within the civil engineering profession.

Summit participants engaged in significant discussion regarding “professional culture” and related topics in the context of civil engineering. Although it may be tempting to place these topics and discussions within the realm of professional skills and attitudes, this subject rose to represent a major theme of the event. At least four (4) of the “top 20” prioritized Opportunity Statements address the concept of civil engineering culture. Participants explored the distinct yet interconnected nature of diversity, inclusion, and equity; the need to engage students at all levels; and the concept of permeating the student educational experience with these concepts. Summit participants suggested that the following elements need to be addressed by the entire profession, within both the education and practitioner communities:

- Dedicated and intentional instruction and training related to diversity, inclusion, and equity;
- Increasing representation within the profession—including student bodies, faculty ranks, and practitioners (at all levels);
- Modeling inclusivity and equity in the classroom and in the workplace; and
- Engaging students at all levels (K-12, college/university), and communicating the value of a civil engineering degree.

OBJECTIVE 4:
Implement a regular schedule of national/international civil engineering education events and dedicate resources to address findings.

Planners of the 2019 Civil Engineering Education Summit consulted a significant body of literature to explore topics and themes arising from previous assessments of engineering education. As noted earlier in this summary, there have been remarkable similarities in topical areas and themes arising from these efforts. Issues identified in the 1955 ASEE report continued to be identified 40 years later at the 1995 ASCE Conference.
Summit participants agreed that the 2019 Civil Engineering Education Summit was highly worthwhile, and expressed both hope and confidence that real and significant change could result from the work accomplished during the Summit. Change will require:

- Ongoing commitment of the civil engineering community – educators and practitioners – to provide the time, effort, and resources necessary to develop, implement, and monitor actions arising from the Summit recommendations.

- A regular schedule of civil engineering education events, i.e., on a 6- to 8-year basis, to assess progress on initiatives from previous efforts and to address new challenges and opportunities.

- Support of academia and the profession, including ASCE, for resources required to develop and implement action items relating to the priorities identified at the Summit.

Continuing the momentum generated during the Summit will require time and resources from academia and the profession, including ASCE, to develop and implement action items relating to the priorities outlined above. To this end, the Committee on Education worked with the Summit Program Committee to approve and launch a CE Education Summit Working Group in April 2020. The working group, composed of leaders and participants of the 2019 Education Summit, is charged with generating ideas for specific action items related to the four Summit objectives and coordinating with ASCE to implement these actions through existing or new committees and initiatives.

In closing, Summit participants recognized that change in civil engineering education will require dedication to a shared vision and a collective willingness to work for it. As presented in summary remarks at the conclusion of the Summit, advancement of civil engineering education will require three elements to TAP the innovation opportunities identified by participants:

- Tenacity to ensure that needed change occurs;

- Audacity to propose bold actions and tactics to fully realize necessary change; and

- Practicality to understand that necessary change can and must occur over different time scales.

Collectively, the vision proposed by the Summit participants is bold and far-reaching. The Opportunity Statements identify both near-term and long-term action areas that will position the civil engineering profession for continued advancement and leadership through the mid-21st century. As such, the findings of the Summit provide vital input to future initiatives such as revisions to the Civil Engineering Body of Knowledge (CEBOK), future formulations of the ABET Civil Engineering Program Criteria (CEPC), ASCE’s Future World Vision, and to civil engineering curricula.
The 2020 Civil Engineering Education Summit would not have been possible without the efforts of these volunteers and staff. Their dedication and hard work are greatly appreciated.

Summit Program Planning Committee

- Kevin Hall (Co-Chair), University of Arkansas
- Dan Linzell (Co-Chair), University of Nebraska-Lincoln
- Barbara Minsker (Chair, Summit Local Organizing Committee), Southern Methodist University
- Robin Autenrieth, Texas AandM University
- Glenn Bell, Simpson, Gumpertz, and Heger
- David Dzombak, Carnegie Mellon University
- Mary Roth, Lafayette College
- Beena Sukumaran, Rowan University
- Camilla Saviz (Chair, ASCE Committee on Education), University of the Pacific
- Jerome Hajjar (Chair, ASCE Department Heads Coordinating Council), Northeastern University
- Leslie Nolen, ASCE
- Dion Coward, ASCE
- Jessica Burnham, M.F.A., Southern Methodist University
- Rick Duschl, Southern Methodist University
- Norb Delatte, Oklahoma State University
- Rick Duschl, Southern Methodist University
- Gray Garmon, M.Arch., Southern Methodist University
- Robert Gilbert, University of Texas at Austin
- Randall Kolar, University of Oklahoma
- Steve Lucy, JQ Engineering
- Leslie Nolen, ASCE
- Lindsay O’Leary, ASCE Texas Section
- Yvette E. Pearson, Rice University
- Camilla Saviz (Chair, ASCE Committee on Education), University of the Pacific
- Devon Skerritt, Southern Methodist University
- Shawnita Sterett, Autodesk, Inc.
- Dan Witliff, GDS Associates, Inc.

ASCE Department Heads Coordinating Council

- Jerome F. Hajjar (Chair), Northeastern University
- Robin Autenrieth, Texas AandM University
- Joel Burken, Missouri Institute of Science and Technology
- Christina Curras, University of Wisconsin, Platteville
- Ben Fell, California State University, Sacramento
- Kirk Hatfield, University of Florida
- Stephanie Luster-Teasley, North Carolina AandT State University
- Barbara Minsker, Southern Methodist University
- Jay Puckett, University of Nebraska
- Chuck Schwartz, University of Maryland
- Filza H. Walters, Lawrence Technological University
• Jason Weiss, Oregon State University
• Dion Coward, ASCE

ASCE Committee on Education
• Camilla M. Saviz (Chair), University of the Pacific
• Anthony L. Cioffi, New York City College of Technology/CUNY
• Allen C. Estes, California Polytechnic State University, San Luis Obispo
• Jerome F. Hajjar, Northeastern University
• Scott R. Hamilton, York College of Pennsylvania
• Tanya M. Kunberger, Florida Gulf Coast University
• Norma Jean Mattei, University of New Orleans
• Stephen J. Ressler
• Matthew W. Roberts, Southern Utah University
• Leslie E. Nolen, ASCE

Workshop Facilitators
• Matthew Barkley
• Tina Barton
• Jessica Burnham
• Christina Donaldson
• Gray Garmon
• DiMitri Higginbotham
• Kindra Knight
• Edward Li
• Rae’Van Parson
• Devon Skerritt
• Ginnie Snead Roark
• Victoria Sun Esparza
• Keya Tollossa

• Tania White
• Michael Zaretsky

Special thanks to Southern Methodist University, the Lyle School of Engineering and Dean Marc P. Christensen, Ph.D., and the Department of Civil and Environmental Engineering and Chair Barbara Minsker, Ph.D., for hosting the 2019 Civil Engineering Education Summit.

Thanks also to the participants of the Summit who gave three days at the end of May 2019 to help envision a new path for civil engineering education. We look forward to following that path with you in the coming years!
Sponsors

We gratefully acknowledge the sponsors of the 2019 Civil Engineering Education Summit. Without their generous support, the Summit would not have been possible.
Appendix

Appendix A: All Opportunity Statements . . 43

Appendix B: Bibliography 50
Appendix A

All Opportunity Statements

Note: This appendix has not been edited and may not reflect appropriate titles and terms.

Below are all of the opportunity statements that were created by the Summit attendees. The “Category” column indicates the general audience the statement is addressing, those who can take action on. The list is in alphabetical order by category.

The statements were created by using the example template to the right. This allowed attendees to take the needs and people surfaced from the previous activities and turn them into actionable statements. The statements gathered below represent the ideas written by each table of attendees. The statements are to be read from left to right, broken up by the people, needs, and opportunity.

<table>
<thead>
<tr>
<th>Category</th>
<th>People</th>
<th>Need to</th>
<th>Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE professionals</td>
<td>Civil engineering professionals</td>
<td>educate the public about infrastructure</td>
<td>government invests in infrastructure</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Businesses / Industry</td>
<td>Collaborate with academia at a larger scale</td>
<td>Students are prepared to adapt to changing and evolving technologies</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Civil engineering leaders</td>
<td>anticipate and leverage future needs</td>
<td>civil engineers are key decision makers in determining the future</td>
</tr>
<tr>
<td>CE professionals</td>
<td>CE professionals</td>
<td>well-developed power skills</td>
<td>they can be effective leaders</td>
</tr>
<tr>
<td>CE professionals</td>
<td>CE professionals</td>
<td>clear ethical sustainability guidelines</td>
<td>they make good decisions</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Well-developed CE professional</td>
<td>fundamental understanding of cyber-security/tech</td>
<td>they can protect the built environment</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Civil engineers</td>
<td>develop power skills</td>
<td>they are effective influencers of the decision makers</td>
</tr>
<tr>
<td>CE professionals</td>
<td>More engineers</td>
<td>assume public leadership roles and responsibilities</td>
<td>they can influence policy and funding decisions</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Professionals</td>
<td>develop communication and marketing skills and technical skills</td>
<td>they value both equally and know the don’t exist separately</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Engineers</td>
<td>watch more cartoons</td>
<td>they are more creative</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Civil engineers</td>
<td>adapt to emerging technologies</td>
<td>the discipline remains relevant</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Problem solvers and all engineers</td>
<td>broaden participation</td>
<td>social inequities are eliminated and people can contribute to their full potential</td>
</tr>
<tr>
<td>CE professionals</td>
<td>CEs</td>
<td>get elected</td>
<td>so they can save the planet</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Practicing civil engineers</td>
<td>be more people-focused</td>
<td>infrastructure meets the needs of all parts of society in equitable ways</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Civil engineers</td>
<td>learn to play the policy game</td>
<td>they can foster rational infrastructure decision making</td>
</tr>
<tr>
<td>CE professionals</td>
<td>CE professionals</td>
<td>ensure inclusive practices</td>
<td>our solutions truly serve society’s needs</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Civil engineers</td>
<td>educate policymakers on implications of decisions</td>
<td>policymakers can choose reasonable policies</td>
</tr>
<tr>
<td>Category</td>
<td>People</td>
<td>Need to</td>
<td>Opportunity</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Professionals</td>
<td>collaborate with educators</td>
<td>students are better prepared for a successful career in industry (public and/or private)</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Civil engineers</td>
<td>embrace and lead change</td>
<td>as a profession we remain relevant</td>
</tr>
<tr>
<td>CE professionals</td>
<td>Civil engineering industry partners</td>
<td>provide experiential learning projects in the workplace</td>
<td>students can apply their knowledge learned in the classroom to solve real-world problems</td>
</tr>
<tr>
<td>Employers</td>
<td>Employers</td>
<td>need to create a work environment</td>
<td>employees have satisfying careers, retained long term, and fulfilled</td>
</tr>
<tr>
<td>Employers</td>
<td>CE employers and programs</td>
<td>adopt attractive culture and climate for all</td>
<td>we can attract and retain CEs who represent the society we serve</td>
</tr>
<tr>
<td>Employers</td>
<td>Employers</td>
<td>Provide scholarships and resources</td>
<td>Talented students are attracted to CEE</td>
</tr>
<tr>
<td>Employers</td>
<td>Employers</td>
<td>support lifelong learning through mentoring and financial support</td>
<td>student will continue to progress in the profession following graduation</td>
</tr>
<tr>
<td>Employers</td>
<td>Civil Engineering employers and industry</td>
<td>be accountable and supportive of high standards of practice</td>
<td>innovation can occur and communities are well served</td>
</tr>
<tr>
<td>Faculty</td>
<td>CE faculty</td>
<td>establish more visionary and flexible minimum standards</td>
<td>curricula can evolve more quickly and uniquely to enable embracing and addressing of worldwide challenges and opportunities</td>
</tr>
<tr>
<td>Faculty</td>
<td>Civil Engineering Faculty</td>
<td>Integrate and teach creativity and innovation into the curriculum</td>
<td>We can build a culture of innovation into the profession and create societal thought-leaders</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>adopt evidence-based instructional methods</td>
<td>critical thinking skills are developed by students to evaluate alternatives considering sustainability and equity for users</td>
</tr>
<tr>
<td>Faculty</td>
<td>Civil engineering faculty</td>
<td>equip students to understand equity and diversity</td>
<td>they can work inclusively in a global environment</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>new metrics for scholarly productivity</td>
<td>the promotions match those thinking forward and addressing the future needs of society</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty, instructors, and CE supporters</td>
<td>Emphasize systems thinking</td>
<td>Sustainable, socially just infrastructure systems can be designed</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty, practitioners, and ASCE</td>
<td>appropriately and factually communicate to influencers and the public</td>
<td>they can impact policy infrastructure funding models and ensure implementation of long-lasting sustainable infrastructure</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>employ inclusive teaching practices</td>
<td>there is a diverse workforce to meet societal needs</td>
</tr>
<tr>
<td>Faculty</td>
<td>CE faculty</td>
<td>be able to work with faculty from other disciplines (EE, CS, geography...)</td>
<td>to develop relevant and exciting causes to retain students in CE and prepare them for the CE profession of the future</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>be provided incentives</td>
<td>our curriculum can evolve</td>
</tr>
<tr>
<td>Faculty</td>
<td>CE department chairs</td>
<td>develop a rubric</td>
<td>they recognize teaching, research, and service contributions</td>
</tr>
<tr>
<td>Faculty</td>
<td>All faculty</td>
<td>have critical conversations</td>
<td>they can work in multidisciplinary ways</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty and CEE students</td>
<td>go into K-12</td>
<td>students can be exposed to and value CEE</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>create curriculum experiences</td>
<td>students appreciate global connectivity and engagement</td>
</tr>
<tr>
<td>Faculty</td>
<td>University faculty</td>
<td>remove barriers</td>
<td>they can meet transdisciplinary challenges</td>
</tr>
<tr>
<td>Faculty</td>
<td>Educators</td>
<td>modernize curriculum</td>
<td>students can meet new challenges</td>
</tr>
<tr>
<td>Faculty</td>
<td>Educators</td>
<td>modernize methods and materials</td>
<td>we can reach a diverse student population</td>
</tr>
<tr>
<td>Faculty</td>
<td>Civil engineering educators</td>
<td>be future-thinking</td>
<td>curriculum is flexible and adaptable to changing needs</td>
</tr>
<tr>
<td>Faculty</td>
<td>CE faculty</td>
<td>incorporate digital engineering</td>
<td>students are prepared for emerging job opportunities</td>
</tr>
<tr>
<td>Category</td>
<td>People</td>
<td>Need to</td>
<td>Opportunity</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>Use advance pedagogical tools</td>
<td>The future needs of civil engineers and society are met</td>
</tr>
<tr>
<td>Faculty</td>
<td>CE faculty</td>
<td>develop and incorporate novel learning techniques</td>
<td>students are driven to and remain interested in CE</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>innovate curricula</td>
<td>students are better prepared to meet the challenges of the future</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty and educators</td>
<td>reorganize away from traditional silos</td>
<td>graduates can better meet the needs of an ever-changing world</td>
</tr>
<tr>
<td>Faculty</td>
<td>Educators</td>
<td>embrace programmatic changes and educational opportunities</td>
<td>students can develop KSAs to innovate and create value for current and future society</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>acquire knowledge and skills</td>
<td>they can integrate new technologies into the curriculum to keep CE relevant</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>broaden their horizons</td>
<td>they can advance civil engineering education</td>
</tr>
<tr>
<td>Faculty</td>
<td>Educators</td>
<td>reimagine curriculum</td>
<td>CE students can solve problems of the future</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>have a clear understanding of the future</td>
<td>they can meet the future needs of students and society</td>
</tr>
<tr>
<td>Faculty</td>
<td>Engineering faculty</td>
<td>have growth and support</td>
<td>they can vary structure and location of education</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>use systems approaches</td>
<td>students can be trained to engineer civil systems</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>have flexibility</td>
<td>students receive the progressive curriculum we think they need</td>
</tr>
<tr>
<td>Faculty</td>
<td>Educators</td>
<td>embrace future innovative knowledge</td>
<td>students become change agents</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty educators</td>
<td>resources and future admin duties + more time w/ student</td>
<td>they can improve/implement innovative experiential learning</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty and current CE students</td>
<td>feel empowered as technology innovators and integrators</td>
<td>future graduates can define new higher value business models for the profession</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculty</td>
<td>change</td>
<td>we can teach the students of the future</td>
</tr>
<tr>
<td>Misc</td>
<td>ASCE</td>
<td>provide repository for future world teaching</td>
<td>change will be encouraged within a reasonable time</td>
</tr>
<tr>
<td>Misc</td>
<td>K-12 students</td>
<td>be exposed to future challenges</td>
<td>they know how CE can help them solve them</td>
</tr>
<tr>
<td>Misc</td>
<td>Industry-university consortia</td>
<td>Sponsor blue sky competitions with startup bootcamps and funding</td>
<td>An entrepreneurial pipeline can be built and students can be energized (sparkle)</td>
</tr>
<tr>
<td>Misc</td>
<td>AEC constituents</td>
<td>rethink degree paths</td>
<td>students can receive the education needed in their lifetime to fully benefit society</td>
</tr>
<tr>
<td>Misc</td>
<td>Accrediting bodies</td>
<td>foster flexible and adaptive program innovation</td>
<td>programs and curricula can rapidly adapt to current/future societal needs</td>
</tr>
<tr>
<td>Misc</td>
<td>Owners</td>
<td>trust highly skilled practitioners</td>
<td>they can make more informed, sustainable decisions</td>
</tr>
<tr>
<td>Misc</td>
<td>Developing communities</td>
<td>see civil engineer as a profession and CE education as a potential avenue for...</td>
<td>addressing social and cultural norms that have adversely affect their development</td>
</tr>
<tr>
<td>Misc</td>
<td>Faculty and students</td>
<td>understand importance of CE</td>
<td>CEs can prioritize public safety and environmental stewardship</td>
</tr>
<tr>
<td>Misc</td>
<td>Non-civil engineering professionals</td>
<td>value CEs (and vice versa)</td>
<td>our rapidly changing ways to deliver infrastructure services to best provide for society’s needs</td>
</tr>
<tr>
<td>Misc</td>
<td>Policymakers/Elected Officials</td>
<td>know the value of infrastructure services</td>
<td>we can meet societal challenges</td>
</tr>
<tr>
<td>Misc</td>
<td>AI machines</td>
<td>be socially conscious</td>
<td>they benefit society</td>
</tr>
<tr>
<td>Misc</td>
<td>Parents of undergraduates</td>
<td>work together with faculty</td>
<td>undergraduates can get better education</td>
</tr>
<tr>
<td>Category</td>
<td>People</td>
<td>Need to</td>
<td>Opportunity</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Misc</td>
<td>PEVs of ABET</td>
<td>clarify what they want</td>
<td>everyone can stop guessing</td>
</tr>
<tr>
<td>Misc</td>
<td>Underrepresented Minorities</td>
<td>Need to receive affordable education</td>
<td>They are successful</td>
</tr>
<tr>
<td>Misc</td>
<td>The Civil Engineering Community</td>
<td>Be mindful of the need of vulnerable population and communities</td>
<td>Access to sustainable infrastructure can happen</td>
</tr>
<tr>
<td>Misc</td>
<td>Students and faculty</td>
<td>mentored experiences</td>
<td>they develop as leaders in the profession</td>
</tr>
<tr>
<td>Misc</td>
<td>CE Teachers</td>
<td>provide data-driven experiences</td>
<td>analytical skills and competencies are cultivated and incorporated in design</td>
</tr>
<tr>
<td>Misc</td>
<td>Students, families, counselors, and teachers from under-resourced K-12 schools</td>
<td>be exposed to STEM opportunities and what civil engineers do / could do</td>
<td>they see the benefits to themselves and their communities</td>
</tr>
<tr>
<td>Misc</td>
<td>Aspiring engineers</td>
<td>be creative</td>
<td>they produce innovative and sustainable designs</td>
</tr>
<tr>
<td>Misc</td>
<td>K-12</td>
<td>understand quality of-life issues</td>
<td>they become more interested in CE</td>
</tr>
<tr>
<td>Misc</td>
<td>High school students</td>
<td>be prepared with the fundamental concept of civil engineering</td>
<td></td>
</tr>
<tr>
<td>Misc</td>
<td>Leaders (stakeholders, practitioners, educators)</td>
<td>collaborate</td>
<td>the rate of innovation is increased</td>
</tr>
<tr>
<td>Misc</td>
<td>K-12 educators</td>
<td>know what civil engineers contribute</td>
<td>they can better prepare students for programs</td>
</tr>
<tr>
<td>Misc</td>
<td>Construction companies</td>
<td>invest in and drive innovative curricula</td>
<td>they have professionals they will need in the future</td>
</tr>
<tr>
<td>Misc</td>
<td>Decision makers</td>
<td>remove regulatory roadblocks</td>
<td>innovation can flourish</td>
</tr>
<tr>
<td>Policymakers</td>
<td>Policy and government leaders</td>
<td>collaborate with CE educators and professionals</td>
<td>they understand and develop solutions to infrastructure and providers</td>
</tr>
<tr>
<td>Policymakers</td>
<td>Policymakers</td>
<td>be educated on infrastructure</td>
<td>they can make more informed decisions to improve quality of life</td>
</tr>
<tr>
<td>Policymakers</td>
<td>Policymakers</td>
<td>have the future vision of diversity and inclusivity</td>
<td>public policy includes equity as a social focus</td>
</tr>
<tr>
<td>Policymakers</td>
<td>Industry and government</td>
<td>fund CE education</td>
<td>there is a vibrant CE workforce to design infrastructure to meet society's needs for sustainable, resilient infrastructure</td>
</tr>
<tr>
<td>Policymakers</td>
<td>Policymakers</td>
<td>understand implication of not investing in sustainable infrastructure</td>
<td>they will support sustainable infrastructure investment</td>
</tr>
<tr>
<td>Policymakers</td>
<td>Politicians</td>
<td>understand the long-term nature of public works projects (civil design)</td>
<td>multiyear megafunding can be applied to the public benefit</td>
</tr>
<tr>
<td>Policymakers</td>
<td>Public/politicians</td>
<td>support funding for infrastructure</td>
<td>designs/projects can improve quality of life</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Everyone</td>
<td>understand the consequences of their actions</td>
<td>we can build a better, sustainable, resilient world</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society</td>
<td>appreciate technical knowledge</td>
<td>we can achieve a more equal, resilient, sustainable society</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society at large</td>
<td>embrace sustainability</td>
<td>humans and the environment have a viable future</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society</td>
<td>sustainable and resilient solutions</td>
<td>they can thrive for the next seven generations</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society</td>
<td>have sustainable sources of shelter, water, and energy</td>
<td>they have a better quality of life</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Humanity</td>
<td>a clean environment</td>
<td>it does not cease to exist</td>
</tr>
<tr>
<td>Category</td>
<td>People</td>
<td>Need to</td>
<td>Opportunity</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Taxpayers</td>
<td>understand implications of not investing in sustainable infrastructure</td>
<td>they support investment in sustainable infrastructure</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society</td>
<td>future/new technologies</td>
<td>they develop resilient and sustainable infrastructure for the future</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society</td>
<td>understand the impact of CE on the quality of life</td>
<td>we can elevate the industry and profession</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society and public officials</td>
<td>Be educated about sustainability</td>
<td>Long-term, resilient infrastructure planning is supported</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Influencers and the public</td>
<td>have the right information</td>
<td>appropriate, sustainable decisions are made about investments and policy in infrastructure</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society</td>
<td>value/appreciate the problems of today and tomorrow</td>
<td>they will support investment</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>General public</td>
<td>live in sustainable cities</td>
<td>we can exist in an equitable society</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society (beneficiaries)</td>
<td>embrace sustainable development concepts and practices</td>
<td>the needs of a changing world are addressed and people flourish</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Community leaders</td>
<td>find / provide funding to support use of future technology</td>
<td>society’s needs are fully met</td>
</tr>
<tr>
<td>Society and Humans</td>
<td>Society</td>
<td>understand, appreciate, and assign a higher value on civil and environmental engineering contributions</td>
<td>civil and environmental engineers can continue to offer sustainable solutions for future generations</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>study emerging area (data science, machine learning, strategic communities, automated design, systems engineering...)</td>
<td>they can design resilient and sustainable infrastructure</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>Need to build portfolios of experiences and knowledge inside and outside the classroom</td>
<td>they can bring systems thinking to current and future societal challenges</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>use personalized learning tools</td>
<td>they can engage in continuous learning after graduation</td>
</tr>
<tr>
<td>Students</td>
<td>Prospective students, including those interested in other professions</td>
<td>recognize the value of a BSCE degree as a foundation for any career path</td>
<td>we attract diversity to programs and have people educated in CE in all different types of careers</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>Develop power skills and people focus</td>
<td>They can design infrastructure relevant to society</td>
</tr>
<tr>
<td>Students</td>
<td>CE students</td>
<td>more integrated curriculum</td>
<td>they can tackle problems of the 21st century</td>
</tr>
<tr>
<td>Students</td>
<td>Engineering Students</td>
<td>the ability to incorporate new things</td>
<td>designs are resilient, adaptive, sustainable, and innovative</td>
</tr>
<tr>
<td>Students</td>
<td>Inadequately prepared students</td>
<td>access to bridge education</td>
<td>they can be successful in CE education and careers</td>
</tr>
<tr>
<td>Students</td>
<td>Entering “underprepared” and underserved students</td>
<td>do not need calculus</td>
<td>they can still study engineering because they have that “spark” but not privileged school systems</td>
</tr>
<tr>
<td>Students</td>
<td>Civil engineering students</td>
<td>have the attitudes, values, drives, disposition, optimism, and innovative spirit</td>
<td>they can identify and respond to future challenges</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>be empowered to innovate</td>
<td>they can adopt and be creative to meet unknown challenges</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>develop necessary foundational skills</td>
<td>they can develop innovative modern design in topic areas of need</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>have more participation in the development of their curriculum</td>
<td>they can build a career path that meets their unique skillsets—bioandCivil engineering</td>
</tr>
<tr>
<td>Category</td>
<td>People</td>
<td>Need to</td>
<td>Opportunity</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>curriculum advancements</td>
<td>they can protect the environment</td>
</tr>
<tr>
<td>Students</td>
<td>URM students</td>
<td>need to have a welcoming, supportive environment</td>
<td>future CEs can more effectively address diverse societal needs</td>
</tr>
<tr>
<td>Students</td>
<td>CE Students</td>
<td>think globally</td>
<td>they can be prepared to solve problems</td>
</tr>
<tr>
<td>Students</td>
<td>CE students</td>
<td>be exposed to a broad educational experience</td>
<td>they can innovate to solve tomorrow's problems</td>
</tr>
<tr>
<td>Students</td>
<td>CE students</td>
<td>have inclusive perspective</td>
<td>needs of stakeholders can be served equitably</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>power skills</td>
<td>can be leaders</td>
</tr>
<tr>
<td>Students</td>
<td>CE students</td>
<td>more education and practine in identifying and acting on their values</td>
<td>they are prepared to deal with ethical dilemmas</td>
</tr>
<tr>
<td>Students</td>
<td>Recent CEE graduates</td>
<td>understand regulatory process and constraints</td>
<td>influence public policy decisions</td>
</tr>
<tr>
<td>Students</td>
<td>CE undergrad students</td>
<td>develop digital computer skills</td>
<td>they can be prepared for future interdisciplinary engineering challenges</td>
</tr>
<tr>
<td>Students</td>
<td>Underprivileged students</td>
<td>mentoring and financial aid</td>
<td>they are successful at school and work</td>
</tr>
<tr>
<td>Students</td>
<td>CE students</td>
<td>have knowledge, skills, experiences, attitudes, and tools</td>
<td>they can effectively respond to future challenges</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>Develop foundational skills</td>
<td>they can develop innovative modern design in topic areas of need</td>
</tr>
<tr>
<td>Students</td>
<td>Non-traditional and under-represented students</td>
<td>flexible educational pathways</td>
<td>they can access education and flourish in their careers</td>
</tr>
<tr>
<td>Students</td>
<td>Prospective students, including those interested in other professions</td>
<td>recognize the value of a CE BS as an educational foundation for any career path</td>
<td>we can attract diversity and have influence in all aspects of society</td>
</tr>
<tr>
<td>Students</td>
<td>Future problem-solving professionals</td>
<td>have systems thinking knowledge</td>
<td>they can consider societal needs in sustainable infrastructure</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>learn power skills</td>
<td>they effectively collaborate and communicate their ideas to their team and a variety of audiences.</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>take ownership of their education</td>
<td>they can attain an independent and sustainable lifestyle</td>
</tr>
<tr>
<td>Students</td>
<td>Undergraduate students</td>
<td>be trained in the fundamentals</td>
<td>they have the background needed to succeed in their chosen specialty</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>develop technical and power skills</td>
<td>they are prepared to solve problems of the future</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>an attitude and value system</td>
<td>enables them to efficiently serve society</td>
</tr>
<tr>
<td>Students</td>
<td>Learners</td>
<td>continuously seek new knowledge</td>
<td>new technologies are brought into the practice</td>
</tr>
<tr>
<td>Students</td>
<td>Engineering students</td>
<td>have intuition and social consciousness</td>
<td>they can have critical conversations</td>
</tr>
<tr>
<td>Students</td>
<td>High school students</td>
<td>be prepared with the fundamental concept of civil engineering</td>
<td>they know what skills they should learn as a qualified engineer</td>
</tr>
<tr>
<td>Students</td>
<td>CE students</td>
<td>develop a growth mindset</td>
<td>they can engage in lifelong learning</td>
</tr>
<tr>
<td>Students</td>
<td>Undergraduate and graduate students</td>
<td>have flexible curriculum (i.e., not over-constrained by ABET or faculty interia or institutionel hurdles)</td>
<td>they can manage change (e.g., climate change, demographics, and materials)</td>
</tr>
<tr>
<td>Students</td>
<td>CE undergrad students</td>
<td>create large-scale physical models along with classic calculations</td>
<td>have a deeper understanding of fundamental concepts</td>
</tr>
<tr>
<td>Category</td>
<td>People</td>
<td>Need to</td>
<td>Opportunity</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Students</td>
<td>New minds</td>
<td>motivated and inspired</td>
<td>we have a diverse, engaged future civil engineering workforce</td>
</tr>
<tr>
<td>Students</td>
<td>Students</td>
<td>mature</td>
<td>they don't waste resources</td>
</tr>
<tr>
<td>Universities</td>
<td>Universities/colleges</td>
<td>form consortia</td>
<td>emerging topics can be team taught with holographic participation</td>
</tr>
<tr>
<td>Universities</td>
<td>University administrators</td>
<td>Need to be open to change and provide support (financial, administrative, structural)</td>
<td>New curricular approaches are encouraged</td>
</tr>
<tr>
<td>Universities</td>
<td>Universities</td>
<td>develop a culture of equity and inclusion</td>
<td>we produce a better prepared diverse workforce</td>
</tr>
<tr>
<td>Universities</td>
<td>Institutions</td>
<td>reward faculty for acquiring new skills</td>
<td>they will expend the effort to improve their knowledge base</td>
</tr>
<tr>
<td>Universities</td>
<td>Administrations</td>
<td>establish incentives</td>
<td>faculty can conduct transdisciplinary projects</td>
</tr>
<tr>
<td>Universities</td>
<td>Universities</td>
<td>reorganize and reincentivize</td>
<td>interdisciplinary collaboration will prosper</td>
</tr>
<tr>
<td>Universities</td>
<td>Universities</td>
<td>create faculty positions</td>
<td>student needs for teaching and research are met</td>
</tr>
</tbody>
</table>
Appendix B

Bibliography

ASCE Education Summit:
Mapping the Future of Civil Engineering Education

May 28-30, 2019
Dallas, Texas
Southern Methodist University

www.asce.org/education-Summit/

www.smu.edu

www.smu.edu/madi